
CS 4251: Computer Networking II January 16, 2008

Hands-On Assignment 1

Instructor: Prof. Nick Feamster College of Computing, Georgia Tech

This problem set has three questions, each with several parts. Answer them as clearly and concisely
as possible. You may discuss ideas with others in the class, but your solutions and presentation
must be your own. Do not look at anyone else’s solutions or copy them from anywhere. (Please
refer to the Georgia Tech honor code, posted on the course Web site).

Turn in your solutions in on February 4, 2008 by 11:59pm (please email PDF with subject
”CS4251 Hands-On 1”).

You are welcome to work with one other partner on this problem if you want, provided you (1) work
out all the problems yourself; (2) type up your own assignment; (3) list on your assignment hand-in
the name of the person you worked with.

Experience with ARP and OSPF in Emulab

This problem will give you hand-on experience with Layer 2 and Layer 3 protocols, and with setting
up network experiments in Emulab. The experimental configuration language is based on Tcl, which
is the same as that which is used for ns, a network simulator.

Setting Up Your Experiment

1. Emulab Go to http://www.emulab.net and request an account. Join project ‘cs4251, group
‘cs4251’. Do this early, as I will need to approve your membership!

2. Topology Setup. Write a tcl procedure that takes an integer n and creates a dumbell
topology as shown in the figure below. You can test your code on emulab or in ns. Make all
“edge” links in the topology 100Mbps/10ms duplex links, with DropTail queues, and the link
between R1 and R2 a 1Mbps/10ms duplex link. Name the nodes as in the Figure, as we will
be using them in later parts of this problem.

node 3

node 2

node1

node 5

node 6

node 4

router 1 router 2

Hint: Reading Emulab and ns documentation will help with this problem.

H1-1



3. Topology Creation. Create your topology in Emulab. You can use the Emulab interface to
get the DNS names and IP addresses of each of the nodes in your topology.

You should be also able to ssh to the nodes and send pings to and from each of the nodes at
this point. We will now experiment on the nodes themselves.

Fun with ARP and Click

1. LAN Setup Put all of the nodes in a large LAN in your configuration file.

(a) Log into node1 and print the ARP table (include the output in your hand-in). Ping
router1. Print the ARP table again. What happened?

(b) What does the “C” flag mean in the ARP table?

2. Writing Your own Switch In this part of the problem, you’ll write the switch table entries
yourself using Click. Fortunately for you, Click already has an EtherSwitch element, so most
of the “hard work” is done. You just have to figure out how to set it up!

(a) Modify your experiment script so that instead of all the nodes being placed on a single
LAN, the nodes are simply set up as point-to-point links. You should be able to test this
because you’ll only be able to ping adjacent nodes in the dumbbell topology.

(b) Download, compile, and install the Click (http://www.read.cs.ucla.edu/click/) mod-
ular router on router1 and router2 in your topology.
Possibly helpful hint: To save yourself the trouble of compiling on the nodes them-
selves, you can compile on a (possibly faster) home machine, and then use emulab’s
tb-set-node-os command to install the proper OS on the Emulab node that will run
your binary.

(c) Install and configure the Click elements on router1 and router2 so that all nodes in the
topology can ping each other. The EtherSwitch element will likely be quite helpful for
you in this regard; ListenEtherSwitch might also be helpful, particularly for debugging.

3. Quick and Dirty Performance Evaluation

(a) Log into node4 and start a tcpdump that looks for ARP packets.
(b) Log into node1 and begin pinging node4.
(c) Show the packet trace excerpt containing the ARP query and response.
(d) Modify your experiment setup so that the interface on node4 that faces router2 fails.

Explain what you did to do this. Also give one other way you might have simulated
this kind of effect. (Hint: You can do this manually on the node, automatically using
Emulab, with Click, etc.). Reinstate the link after you’re done with the next part of the
problem.

(e) How long does it take before node1’s ARP table entry expires?
(f) How long does it take before node4 begins responding to pings after you have reinstated

the link?

H1-2



Fun with OSPF

In this part of the problem, you will configure the Quagga (http://www.quagga.net/) software
router’s OSPF module to connect the nodes in your topology.

1. Uninstall Click, but keep the point-to-point Emulab topology. Your topology should now be
as before: each node should be able to ping its immediate neighbors, but no other nodes in
the topology.

2. Install and configure OSPF on each of the nodes in the topology. (If you want to save work,
it’s fine if you only install OSPF on node1, node4, router1 and router2, but you will see more
of the flooding effects if you install everywhere. You can also save work by using a Perl, Ruby,
or Python script to generate your configuration.)

3. How often do you see OSPF “Hello” messages? How often do you see an LSA message for
any single link?

4. Repeat the “quick and dirty performance evaluation” above where you fail a link in the
topology and then bring it back. How long does it take before node1’s routing table entries
reflect that node4 is “dead”?

H1-3


