Improving energy efficiency for networked applications

Jeff Mogul -- Jeff.Mogul@hp.com HP Labs, Palo Alto

If energy efficiency matters to us, and networked applications matter to us, doesn't the energy efficiency of networked applications also matter to us?

My goal: An end-to-end view

- Understand where the energy gets used
 - At all components in an end-to-end application
- Look for places to improve efficiency
 - Focus on Barroso's "Proportionality Principle"
- Think about benchmarking and measurements

Caveats

- I'm not really an expert
- Most of this isn't my own work
 - I've been a little sloppy about citations
- Don't trust my numbers
 - You'll even see some contradictions in this talk
- I will pose questions, but not always answer them

Motivation

Why energy efficiency matters

Per recent EPA study, as of 2006, US data centers:

- Consumed ca. 61 billion KWh of energy
- Accounted for ca. 1.5% of US total electricity use
- At a cost of \$4.5 billion
- Doubling time for DC energy use: about 5 years

Not all data center applications are networked, but:

- Many are
- The trend is towards networking in every application

Why energy efficiency matters



Photo by Ansgar Walk, licensed under the Creative Commons Attribution ShareAlike 2.5 License

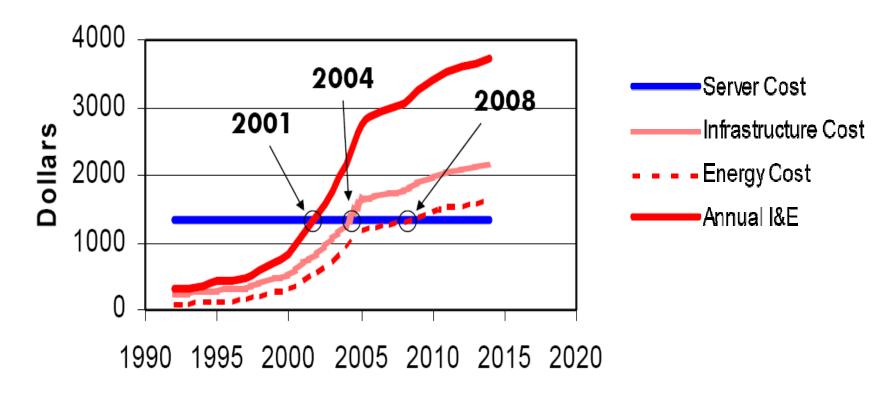
Another cut at the big picture

- 5000 data centers
 - @ 2MW each for computing
 - + 2MW each for cooling
 - = 20GW world-wide
- 4,000,000,000 handhelds + PCs (more or less)
 - @ average of about 12W each (?)
 - = 48GW world-wide
- Don't ignore the end-hosts!

What does this mean in terms of CO₂?

- Perhaps 175 million metric tons/year
- Could save 47M metric tons of CO2 by 2011
 - Best case, per 2006 EPA study
- Global warming results from an excess of ca. 20 billion metric tons/year
 - IT as a whole: less than 1% of the problem
 - Vs. "all fossil fuels" = ca. 23 bmt/year
 - But solution may depend on lots of small improvements

How much of all this computing-related energy goes into networking?


Estimates from various sources via Nordman + Christensen [2005]:

- The numbers are old mostly year = 2000:
- "Big IT" all electronics: 200 TWh/year
- "Little IT" offices/telecom/data centers: 97 TWh/year
- Possibly "networking": 44%
 - PCs: 31 TWh/year (perhaps 46 TWh/year in 2005?)
 - Servers: 12 TWh/year
- Definitely "networking": 18%
 - NICs: 5.3 TWh/year
 - Switches/Hubs/Routers: 6.05 TWh/year
 - Telecom: 6.1 TWh/year

Ultimately, perhaps half of this is "networking related"

Energy: cost matters, too

- Infrastructure & Energy Costs 2X price of a 1U server
 - In the future, the I&E costs will be even higher

Source: Malone, C.G., Belady, C., 2007, 'Metrics and an Infrastructure Model to Evaluate Data Center Efficiency,' Proceedings of IPACK 2007, Vancouver, BC. IT & cooling power & electricity cost of \$0.1/kW-hr

Some principles

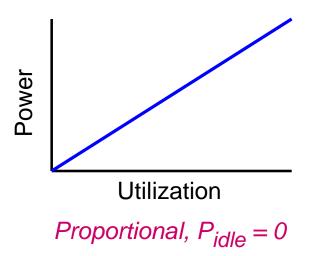
Basic principles

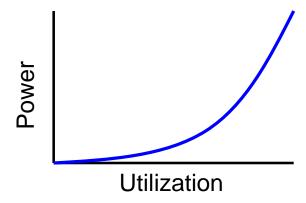
- Barroso's Proportionality Principle
 - Energy use should be proportional to system activity
- Design for efficiency vs. peak performance
 - A little more peak performance isn't worth a big efficiency loss
- Get things done as fast as possible
 - A system that is waiting is a system that is wasting energy

Barroso's Proportionality Principle

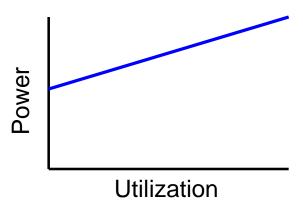
See "The Case for Energy-Proportional Computing," Luiz André Barroso and Urs Hölzle, IEEE Computer, Dec. 2007

- Server systems mostly between 10% and 50% utilized
 Energy use should be proportional to system activity
- Ideally, P_{idle} = 0
 - This may be an unreachable ideal, in most cases
 - Implies a wider dynamic power range than for current systems – these generally have P_{idle} >> 0

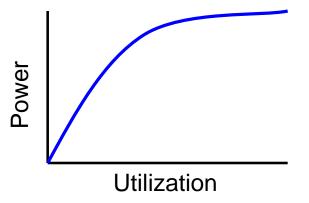

Why proportionality helps


Non-proportional systems force us to actively manage for energy efficiency – this is a bug

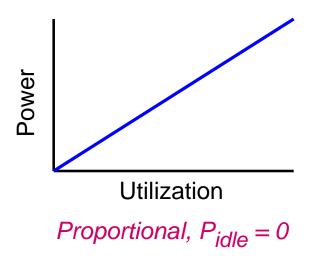
- E.g., moving load around so we can shut off servers
- Explicit power state transitions can add too much latency, especially in server applications
- Managing things requires information we might not have
- Managing things can lead to mistakes

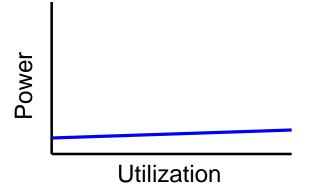


Examples of power vs. utilization curves



Could be better than simply linear, but makes management harder




Proportional, P_{idle} >> 0

Not proportional, OK only extremes of utilization

But don't neglect basic energy efficiency

Not proportional, but generally much better unless system is often idle.

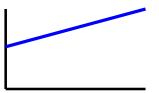
Intrinsic vs. managed proportionality

- Managed proportionality: a higher-level or external manager needs to configure a component to align energy and load
 - E.g., choose a power state or power-down a component
- Intrinsic proportionality: each component naturally consumes energy proportional to load
 - E.g., variable-speed fan with temperature sensor
 - Generally this is more robust
- Managed proportionality at one level can look like intrinsic proportionality from a higher level

Efficiency vs. peak performance

Researchers and marketers tend to focus on peak performance:

- Easiest way to make quantified comparisons
- But: leads to diminishing returns small increase in peak performance costs big increase in energy
 - Violates proportionality principle

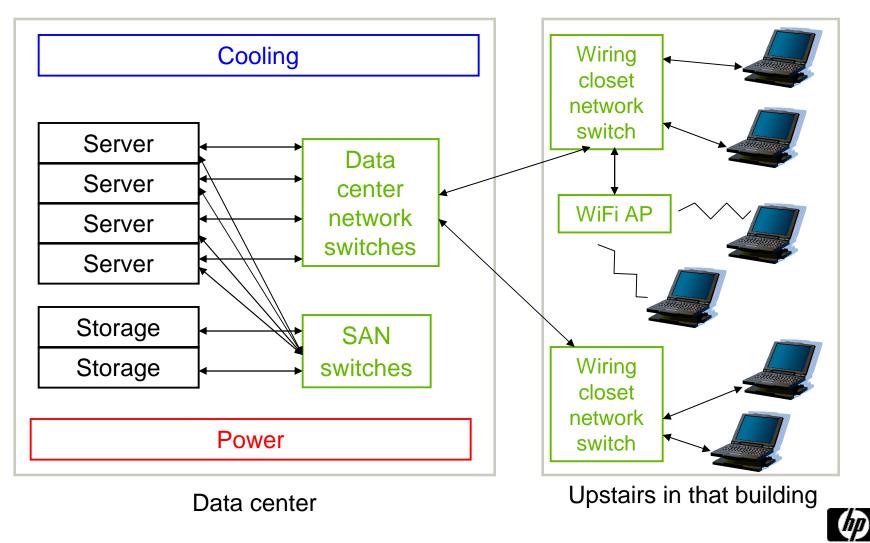

Barroso and Hölzle observe:

 Mobile devices generally either "very idle" or "very peak", so designers tend to underemphasize energy efficiency at mid-level utilizations

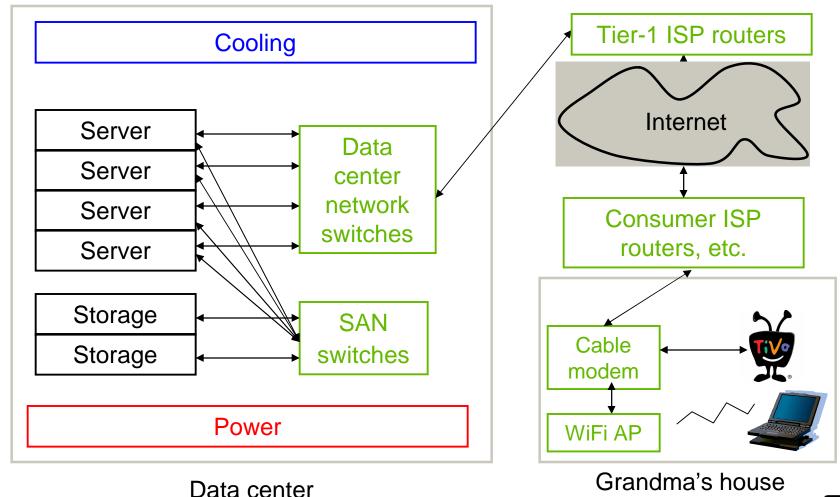
Get things done as fast as possible

- Most systems work like this:
 - P_{idle} >> 0

- Leaving components idle while they wait for something to happen wastes energy
- If efficiency is defined in terms of tasks completed per unit time per joule, then generally it's optimized by not wasting any time
 - "Watching a movie" is not this kind of task



Where is the energy consumed?


... and where could we consume less?

A schematic diagram: Local-area application

A schematic diagram: Wide-area application

Places to look for energy inefficiencies

The data center:

- Power provisioning
- Cooling
- Servers (CPU, RAM, NICs, storage)
- Network switches and routers

The long-haul network:

- POPs as instances of data centers
- Long-distance transmission of bits

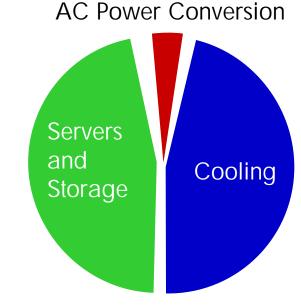
The other end of the network:

- Home-user energy costs
- Could also be another data center


Data Center power provisioning

- Data centers must be provisioned for peak power
 - Otherwise, circuit breakers trip
 - Usually a firm upper limit on available watts from power co.
- Power delivery infrastructure loses ca. 10%
 - Power line + distribution losses
- Data centers need backup power more inefficiencies
 - UPS: 70%--95% efficient but generally, smaller ones less efficient
 - Flywheels: 93%--98% efficient (but low efficiency near idle)
 - These systems are always in the loop
- Diesel generators: 30%--55% efficient
 - Energy input is diesel fuel
 - Not normally running, though

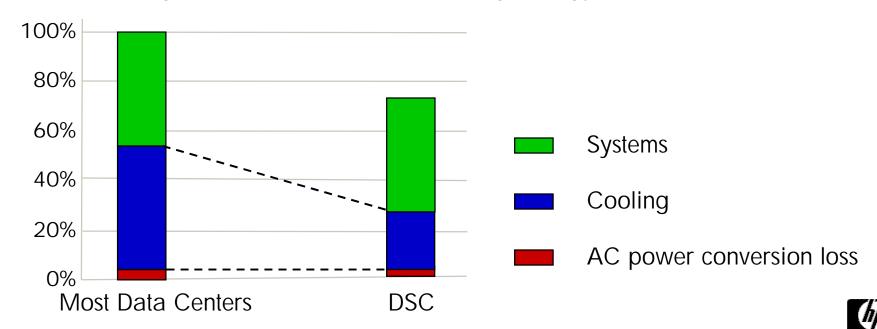
Power supply efficiencies

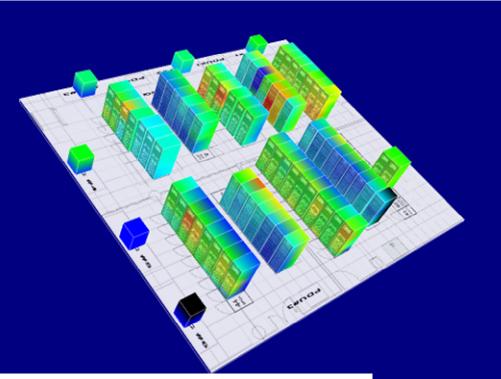

- Typically 55%--75% efficient; getting to 85%--95%
 - Efficiency declines at lower loads (non-proportional)
 - N+1/N+2 redundancy ca. ½ as efficient on average

²⁶ From: M. Ton, B. Fortenberry (2005, LBNL), "High-Performance Buildings: Data Center Server Power Supplies"

Data center cooling

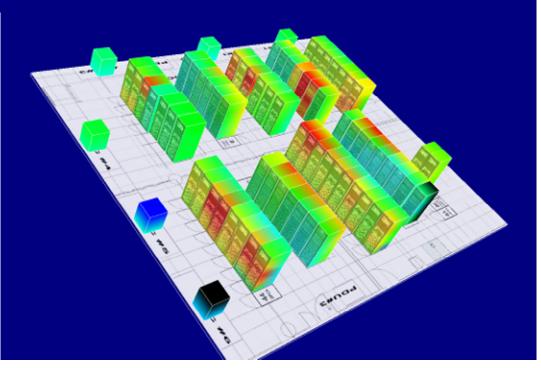
- Traditional data center cooling is inefficient
 - Rules of thumb are often wrong
 - Simplistic feedback loops force over-cooling
- Cooling represents about
 50% of an "average" data center's power consumption
- Most data centers are overprovisioned w.r.t. cooling




Belady, C., Malone, C., "Data Center Power Projection to 2014", 2006 ITHERM, San Diego, CA (June 2006)

Cooling can be much more efficient: "Dynamic Smart Cooling"

- Use good models for heat flow
- Use many more temperature sensors (sensor network!)
- Use fine-grained control over airflow
- Use reactive control
 - Cooling is proportional to computing energy load


HP Labs Data Center

3D Real-Time Imaging of Measured Environmental Data

Conventional Mode

Dynamic Smart Cooling Mode

- 35% Energy Savings
- Improved reliability
- Improved AC infrastructure utility

Server hardware

Peak energy goes into:

• CPUs: 28% to 51%

• RAM: 19% to 31%

Disks: 1% to 4% (more for a storage server!)

PCI slots: 7% to 20% (when fully used)

NICs: 2% to 6% (when all ports used)

Fans, Power supply, other stuff: 7% to 22%

Based on plausible server configurations

From Table 3-3, Kevin Leigh, "Design and analysis of Network and IO consolidations in a General-Purpose Infrastructure", PhD dissertation, University of Houston, 2007

Peak-to-idle power ratios for servers

Barroso and Hölzle observe:

- "even an energy-efficient server consumes ca. half its full power" when idle
- Most servers run 20% -- 30% utilized, so at less than half of their best-case energy efficiency

Where does the idle power go?

CPUs: 1/10 to 1/3 of peak power

DRAM: ½ of peak power

Disks: ¾ of peak power

NICs: little or no decline from peak?

Other stuff: not clear

How can we improve server power efficiency?

CPUs

- Lots of work going on here no more low-hanging fruit?
- Some create proportionality
 - e.g., clock-gating; voltage/frequency scaling

RAM

- E.g., avoid refreshing "dead" rows in DRAM
 - Proportional to RAM use if fragmentation is limited
 - OS support could help?

Disks

- Can use Flash in specific (niche) applications
 - Could increase chances for disk spin-down?

What about NIC power efficiency?

NICs don't take a lot of the power now (2%--6%)

- But mostly non-proportional (?)
- Future NICs may take more power (TOE, RDMA)
 - 10GB copper Ethernet might be as much as 14W/NIC
 - Vendors claim 5W/NIC is feasible

What can be done?

- NIC CPU: should improve analogous to GP CPU
- Physical interface: improves w/shift to new PHY
- Later I'll describe "Energy-efficient Ethernet" work

How the Operating System can help

- Usual power-management stuff
 - Maybe this can be improved, but it looks iffy
- "Tickless kernel"
 - Idle system doesn't wake up CPU on every clock tick
 - Available in Linux 2.6.21
 - Incremental power savings might be small
 - Except: when multiplexing lots of nearly-idle VMs on one physical machine?

How multi-core can help

Obtain proportionality by shutting down some cores under low load

Can respond relatively fast to load increases

Asymmetric multi-core:

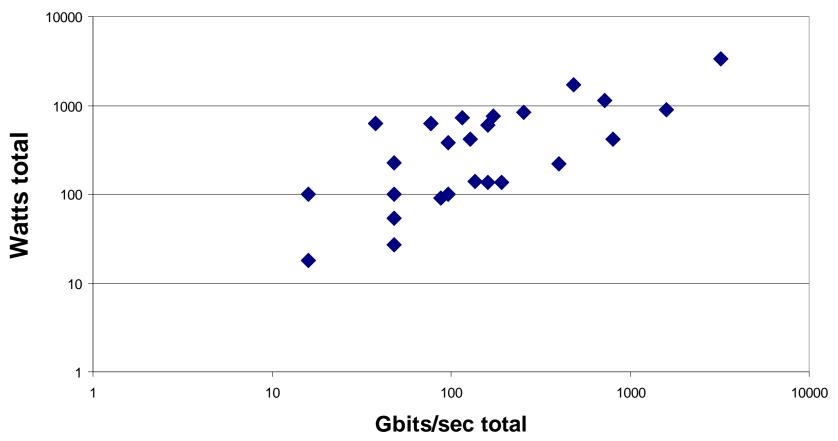
- Some complex cores with high peak performance
- Some simple cores with low power consumption
- Shift application threads based on their phases
 - See Kumar et al. in MICRO-36, 2003
- Or: use simple cores just for OS functions
 - Complex cores mostly wasted (space, watts) on an OS

Application Software

- Load-spreading/load-balancing:
 - good for peak performance, robustness against failure
 - Bad for energy proportionality
 - Depends on time scale of proportionality
 - Over scales >= minutes, load-balancers could manage energy
- Are DHTs bad?
 - DHTs spread load randomly, by design
 - All nodes must be always-on ... or can we do better?
- botnets they are an "application"!
 - how much energy do these waste?

Switches and Routers

One estimate: 15% of data center compute power


- Not including firewalls
- Blade servers may reduce this somewhat

Switch power is non-proportional:

- Switches rarely offer low-power modes
- Usually over-provisioned (for hot-spots + failures)

How much power do LAN switches consume? (Watts vs. Gbits/sec total for random switches)

Note: log-log scale

Notes on preceeding plot

- "Name-plate" power from several manufacturers
 - But some make it harder to pick useful numbers
- Watts/port might be a better metric
 - But definitely varies by port type see next slide
- Not weighted by number of ports in service!
 - In reality, lots more ports on lower-speed switches
- Other caveats:
 - Redundant power supplies will affect results
 - Biased towards systems with easy-to-understand spec sheets

Data transmission: within the data center

- Data centers are full of cables
 - Large cables block airflow, make cooling inefficient
- Driving data (high speed, low noise) takes energy
 - Copper 10GBase-T: ca. 5W—11W "per end"
 - Fiber @ 10Gbit/s: ca 0.5W per end (e.g., Finisar)
 - Typical InfiniBand (IB): 1W 2W per end
 - IB w/active ends + low-loss: 0.25W/end (e.g., Gore)
 - (Within blade chassis: 10—20 mW/Gbit/sec)
- Multiply by several ports per server
 - Don't forget the other end of each link!
- And not proportional to load ports always on

Data-center-wide approaches to improving network power efficiency

- Problem: always-on switches, low utilization
 - Could consolidate server load in subset of racks, then turn off unnecessary routers
 - Could add redundant low-power/low-throughput switches, then power-on switches appropriate to load
 - Ideas from Partha Ranganathan, Puneet Sharma, Sujata Banerjee
- Switch/server reconfigurations may take minutes or longer
 - Can we do anything at finer time scales?

Where in the network infrastructure does the energy go?

Data from 2000 NTIS study (after Gupta & Singh, 2003):

Device	# deployed	Annual	7
		10 ¹² WH	
Hubs	93,500,000	1.6	
LAN switches	95,000	3.2	0.070/ 04
WAN switches	50,000		0.07% of IS total for
Routers	3,257	1.1	2000
Total		6.05	1

Most of this energy goes to LANs

- But a few WAN routers take a large chunk
- Table doesn't account for cooling, backup power

How much energy does it cost to send a byte over a long distance?

Gupta & Singh ("Greening of the Internet", SIGCOMM 2003) estimate:

- 0.128 to 0.225 Joules/byte
- Based on 20 35 x 10¹⁵ bytes total in 2000

Gupta & Singh suggest:

- Re-routing during low activity
- Sleeping router components when no packets
 - Their AS: inter-arrival time > 200 ms for 91% of packets

IEEE Energy-Efficient Ethernet (EEE) study group

- Formed in late 2006
- Basic approach: change PHY based on activity
 - High-power 10 GB/s PHY during peak activity
 - Low-power 1GB/s PHY during low activity
 - Could go even slower, but energy savings less significant
 - Might save 80% of NIC energy?
 - Resynchronization may take ca. 3--4 msec?
 - Longer for up-shift to 10GB? this isn't easy!
 - Control policy decides when to change speed
 - Both ends of link must cooperate to avoid thrashing
 - Details at: http://www.ieee802.org/3/eee_study/

Home users of the Internet

- Networked applications drive most(?) of home computing
 - Email, Web, IM, games, video, MP3s, etc.
- Increasing use of home networking leads to an increase in always-on systems
- "36 million home offices in the US" (IDC)
 - Not clear what fraction are used for full 8-hour days

Some data from "Extreme energy makeover: Home office edition" by Robert Mitchell, Computerworld, Nov. 8 2007

Home-network power consumption ("Typical" of modern equipment)

Possibly proportional:

- Desktop: 50W 90W on, ca. 10W standby
- Gaming PC: 300W or more
- My laptop: 17W 35W on, 1W sleep
- LCD monitor: 15W 30W on, 1W 2W standby
- Networked printer: 65W on, 2W standby

Always-on:

- WiFi router: 5W
- Cable modem: 5W
- Backup storage: 17W (or more data is hard to find)
- TiVo: 28W
- And those blobby AC adapters really suck ... energy
 - 30% to 60% efficient, per EPA
 - ENERGY STAR adapters are at least 30% better than old average

Client systems at the office

How many people leave their desktops running all night for networked functions such as:

- Backups
- Patch scans and updates
- Virus checks
- etc.?

Networking + virtual machines could help:

- VM migrates to server before desktop turns off
- Maintenance function wakes up VM as needed
- See CMU's "Internet Suspend/Resume", Stanford's "Collective"

"Sleep-friendly PCs"

Unpublished(?) work by Bruce Nordman (LBNL) and Ken Christensen (U. South Florida)

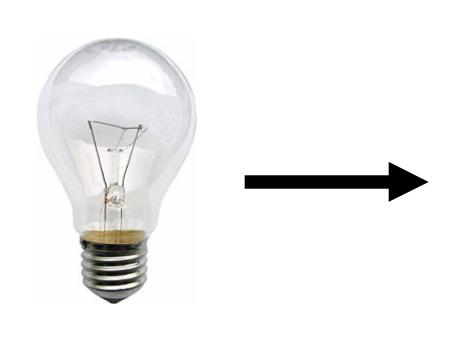
http://www.csee.usf.edu/~christen/energy/main.html

Goal: sleep as much as possible without losing "network presence"

Approach:

- Reliably wake up PC exactly when needed
- Expose PC's power state to rest of network
- Proxy functions run in a "SmartNIC"
 - low power, protocol-aware for background traffic

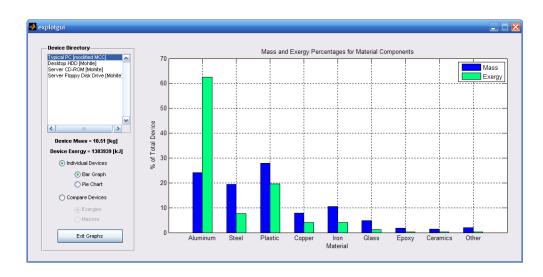
Keeping things in context


Don't get too focused on computers

Plasma TVs probably consume more than home PCs

- E.g., 50" TV = 450W
- Hours/day that TV is on in average U.S. home:
 - 6 hours, 47 minutes

Your home office probably has several of these



Ca. 75 W Ca. 20 W

And don't forget the energy required to build the hardware!

Prediction of "exergy" (available energy) destroyed during raw material extraction (better metric than mass)

- nearly 400 kWh of exergy required to extract materials for example laptop
- Aluminum has highest exergy loss, even though more mass in plastic
- As comparison, a 100-W system used for 6 hrs/day will consume about 440 kWh over a 2-yr period

What next?

"More research is needed"

In the next few slides, I'll discuss:

- Benchmarking energy efficiency
- Accounting for costs of sustainable energy
- What kinds of measurements we need
- Things I left out, for lack of time

Benchmarking networking energy efficiency

Progress is seldom made without good benchmarks:

- Easy-to-understand results, even if oversimplified
- Agreed upon by majority of vendors + users
- Will need good metric of "useful work"
- Will need anti-cheating rules

Other application energy-efficiency benchmarks:

- JouleSort: Records sorted/Joule
 - Rivoire, Shah, Ranganathan, Kozyrakis, SIGMOD '07
 - Paper shows way to optimize system hardware for energy efficiency
- SPECpower: server-side Java, various usage levels

How to design a benchmark of networking energy efficiency?

Define an application-level "goodput" metric

- E.g., Fully-rendered pages; VoIP sessions
- May require some QoS level (e.g., dropouts/sec)

Define how to measure energy use

- What energy counts against "networking"?
- How "end-to-end" could this actually be?

Think really hard about the "anti-cheating" rules

- Is caching/prefetching "cheating"?
- Is lousy QoS cheating?

How would IT change if electricity costs reflected full sustainability?

Simply "carbon-neutral" isn't good enough; even zerocarbon generators can have unsustainable externalities (e.g., big hydro-electric)

- Wide range of "social cost" estimates: \$5--\$150/ton of C
- Electricity cost estimates: 3% to 100% more per KWh

Thought experiments: if electricity costs doubled --

- Would PC buyers be willing to pay the costs?
- What HW changes would designers make?
- How would corp. IT managers change their ways?
- Would this drive better broadband bandwidths?

Measurement problems

It's very hard to get power vs. load info:

- Vendors typically specify power-provisioning #s
- Little info on power consumed by manageable components

I had a hard time getting WAN power numbers:

- ISPs are secretive
- Some of it must go into telco equipment and lines

Most systems don't provide "power introspection"

Makes automated self-management harder

Things I left out of this talk

- Encryption
 - Can take a lot of energy
- Energy analysis of cell phones + handhelds
 - There are a lot of them
 - People have already done a lot of energy optimization
- Sensor nets
 - All sorts of good energy-related research
- Protocol (re-)designs for energy efficiency
 - Probably plenty of room for improvement

Summary

People are taking energy efficiency seriously

- Networking might seem like just a sliver, but not if you account for the complete end-to-end path
- The next few years should see some real improvements in how networking uses energy

Proportionality matters, because ...

- Most computers are mostly idle
- It simplifies energy management
- It's a useful way to think about design goals

We still don't really understand how to measure this stuff

We really need better metrics + benchmarks

Thanks to the HP people who helped me

- Eric Anderson
- Sujata Banerjee
- Hans Boehm
- Cullen Bash
- Christopher Hoover
- Kevin Leigh
- Moray McClaren
- Partha Ranganathan
- Puneet Sharma
- Amip Shah
- Mehul Shah

We have openings for summer interns

- Try www.hpl.hp.com/jobs in January
- Or contact me if that doesn't seem to work

Questions?

