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ABSTRACT
We propose Push-to-Peer, a peer-to-peer approach to coop-
eratively stream video. The main departure from previous
work is that content is proactively pushed to peers, and per-
sistently stored before the actual peer-to-peer transfers. The
initial content placement increases content availability and
improves use of peer uplink bandwidth.

Our specific contributions are: (i) content placement and
associated pull policies that allow optimal use of uplink
bandwidth and perfect balancing of download rates among
competing downloads; (ii) performance analysis of such poli-
cies in the case of controlled environments, e.g. DSL net-
works under ISP control; (iii) distributed load balancing
strategies for initial selection of serving peers; (iv) distributed
strategies to cope with dynamic uplink bandwidth. The
latter two contributions allow to handle the case of uncon-
trolled environments, e.g., the public Internet.

1. INTRODUCTION
Over the past five years, there has been considerable re-

search in the use of peer-to-peer networks for distributing
both live [6, 26, 20, 19] and stored [7, 2] video. In such sys-
tems, peer interest plays the central role in content trans-
mission and storage - a peer pulls content only if the content
is of interest. Once pulled content has been stored locally,
the peer may then in turn distribute this content to yet
other self-interested peers. Such a pull-based system design
is natural when the individual peers are autonomous and
self-interested. However, when the individual peers are un-
der common control, for example in the case of a residential
home gateway or set-top box under the control of a net-
work or content provider, a richer range of system designs
becomes possible.

In this paper, we investigate the design space of a Push-
to-Peer Video-on-Demand (VoD) system. In such a sys-
tem, video is first pushed (e.g., from a content creator) to
a population of peers. This first step is performed under
provider or content-owner control, and can be performed
during times of low network utilization (e.g., early morn-
ing). Note that as a result of this push phase, a peer may

store content in which it itself has no interest, unlike tra-
ditional pull-only peer-to-peer systems. Following the push
phase, peers seeking specific content will then pull content
of interest from other peers, as in a traditional peer-to-peer
system. The Push-to-Peer approach is well-suited to co-
operative distribution of stored video among set-top boxes
in DSL networks, where the set-top boxes themselves oper-
ate under provider control. We believe, however, that the
Push-to-Peer approach is more generally applicable to cases
in which peers are long-lived, and willing to have content
proactively pushed to them before video distribution among
the cooperating peers begins.

In this paper, we consider the design and analysis of a
Push-to-Peer system in a network of long-lived peers in which
upstream bandwidth and peer storage are the primary re-
sources constraints. We begin by considering a controlled en-
vironment, with a set of always-on peers, constant available
bandwidth among the peers, and the possibility of central-
ized control, assumptions appropriate in the specific setting
of a VoD system consisting of set-top boxes within a single
DSLAM [11] in a DSL network. We begin by describing an
idealized policy for placing video data at the peers during
the push phase - full striping - and its consequent pull policy
for downloading video. We demonstrate that no other data
placement policy can satisfy a higher demand rate without
blocking (which occurs when a peer is unable to download
a video at a sufficiently high rate to support playback). We
also consider the practical case in which the number of peers
from which a peer can download is bounded, and propose
two policies - constrained striping and a coding scheme -
for handling this constraint. We analyze the performance of
these policies (in terms of blocking under a no-wait blocking
model, and delay under a model in which blocked requests
are queued until they can be served). Our performance mod-
els can be used not only to quantitatively analyze system
performance but also to dimension systems so that a given
level of user performance is realized - an important consid-
eration if Push-to-Peer is provided as a billable service by
the network provider. We also consider the case of prefix
caching at the peers.



While the discussion above has focused on controlled en-
vironments, we are also interested in uncontrolled environ-
ments, e.g., as in the public Internet. Our initial work here
analyzes the performance of a distributed policy for assign-
ing equal number of peers to each box (in the absence of
centralized control) and analyzes the properties of two differ-
ent approaches for handling the case of time-varying upload
capacities. We believe this paper thus provides a founda-
tion for both a practical and a theoretical understanding of
the design and performance of this new class of peer-to-peer
based VoD systems.

The remainder of this paper is structured as follows. In
Section 2, we describe the controlled DSLAM setting, and
the push and pull phases in more detail. We also summarize
some of the important differences between the Push-to-Peer
and traditional peer-to-peer approaches for VoD. In Section
3, we describe three policies for placing video data at the
peers during the push phase. In Section 4 we analyze the
performance of the previous schemes under both a blocked-
calls-lost and blocked-calls-queued model. We apply those
analytical results to address the problem of prefix sizing. In
Section 5 we turn our attention to less controlled environ-
ments, and investigate the performance load balancing poli-
cies and the properties of two approaches for time-varying
upload capacities. Section 6 presents a discussion of the
related work. Section 7 concludes this paper.

2. NETWORK SETTING AND PUSH-TO-PEER
OPERATION

In this section, we describe the network setting for the
Push-to-Peer architecture and overview of push and pull
phases of operation. We also describe our model of video
playback, in terms of user requirements and performance
metrics.

We will describe the Push-to-Peer architecture in the con-
text of a number of always-on set-top boxes (STBs) or Res-
idential Home Gateways (RHGs) that collectively sit below
a DSLAM in a DSL network and cooperatively distribute
video amongst themselves, as described below. We focus
on this particular controlled network setting because it pro-
vides a concrete real-world scenario, but stress that the the
Push-to-Peer approach is more generally applicable to cases
in which peers are long-lived, and willing to have content
proactively pushed to them before video distribution among
the cooperating peers begins.

Figure 1 illustrates the network setting. The Push-to-
Peer system is composed of a content server, a control server,
and boxes at the user premises. The content server, located
in content provider’s premises, pushes content to the boxes
during the push phase, as described below. A control server
is also located in content provider’s premise; it provides a
directory service to boxes in addition to management and
control functionalities. The always-on STBs or RHGs reside
at the customer premises. Although there are important
technological and commercial differences between STBs and
RHGs, we will refer to these devices generically as boxes in
the remainder of this paper, since their crucial capabilities
- the ability to download, upload, and store video under
provider control - are common to both STBs and RHGs.

Content distribution proceeds in two phases in our Push-
to-Peer system.

• Push Phase. During the push phase, shown in Fig-

ure 1, the content server pushes content to each of the
boxes. We envision this happening periodically, when
bandwidth is plentiful (e.g., in the early AM hours).
After pushing content to the peers, the content server
then disconnects (i.e., does not provide additional con-
tent push), until the next push phase. A crucial issue
for the push phase is that of data placement: what
portions of which videos should be placed on which
boxes; we address this problem in Section 3.

• Pull Phase. In the pull phase, shown in Figure 2,
boxes respond to user commands to play content. Since
a box will typically not have all of the needed content
at the end of the push phase, it will need to retrieve
missing content from its peers. While it is possible for
the boxes to proactively push content among them-
selves (not in response to user commands) we do not
consider that possibility here.

We make the following assumptions about the DSL net-
work, and the Boxes at the user premises:

• Upstream and downstream bandwidth. We as-
sume that the upstream bandwidth from the boxes to
the DSLAM is a constrained resource, and is smaller
than the video encoding/playback rate. We will con-
sider the cases that the available upstream bandwidth
for the Push-to-Peer system is either fixed, or can vary
over time. We assume that if a peer is uploading video
to N different peers, then the upstream bandwidth is
equally shared among those N peers. We also assume
that video is transferred reliably, either through FEC
or some ARQ mechanism. We assume that the down-
stream bandwidth is large enough so that it is never
the bottleneck when a peer is downloading video from
other (possibly many other) peers (instead, the up-
stream bandwidths at those other peers are collectively
the limiting resource). We thus also assume that the
downstream bandwidth is larger than the video encod-
ing/playback rate.

• Peer storage. We assume that boxes have hard-disks
that can store content that is pushed to the box during
the push phase. This content can then be uploaded to
other peers upon request, during the pull phase. The
disk may also store movie prefixes, that are used locally
at the STB to decrease startup delay, as discussed in
Section 4. We note that when an STB needs to pull
video from other boxes for movie playout, this video
must also be stored in a local playout buffer, but we
do not consider the (relatively small) requirements of
this playout buffer here.

• Peer homogeneity. We assume homogeneous peers,
i.e., that all peers have the same upstream link band-
width and the same amount of hard disk storage.

The requests for video playout are generated by users lo-
cated at the boxes. We assume that a user views a video
from start to finish, with no VCR actions. A box will start
to play a video as early as possible (without waiting for
the whole movie being available in its memory), as long as
it is guaranteed to be able to play a video without buffer
under-run. Specifically, suppose that at time 0, a box starts
to download the missing portion of movie in parallel from



other boxes. At time t, the playback starts if it is guar-
anteed that there is a schedule of available boxes with the
needed missing content and sufficient upstream bandwidth
to supply each missing block before its playout time.

We define a minimum fetch size of a partial copy of movie
for parallel downloading to support pseudo-streaming capa-
bility. Specifically, we divide a movie of size L into chunks
of equal size W , which we call windows. A window is the
minimum unit of segment of a movie which should be avail-
able in the local memory of the viewer, in order to be played
back. Therefore, the startup delay will be represented as the
lead time to play a set of initial x windows (mostly x = 1).
To enable parallel downloading, a given window is divided
into smaller blocks of equal size and those blocks are dis-
tributed to the boxes. In the block distribution schemes we
consider, typically each box will only keep a fraction of the
blocks that comprise a window.

Because we are interested in systems in which the startup
delay is relatively small, we will require that the aggre-
gate rate at which a peer receives downloaded video from
the other peers to be at least as large as the video encod-
ing/playout rate 1. If a user requests video playout and this
aggregated upload rate is not available, the video playout
request is blocked. We will mostly consider the case where
blocked calls are lost, but will also consider the case where
blocked calls can be queued.

Since the Push-to-Peer provides on-demand video stream-
ing, we consider the maximum start-up delay and request
blocking rate as the metrics to measure the performance of
the Push-to-Peer system.

Video 
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.
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Figure 1: Push phase

The main notations that will be used throughout the pa-
per are listed in Table 1.

3. DATA PLACEMENT AND PULL POLI-
CIES

In this section we first propose the full-striping data place-
ment scheme. Next we establish its optimality in terms of
the demand rates it can accommodate. We then introduce

1We treat the data blocks already pushed to a peer’s mem-
ory as if they are also downloaded from other peers within
0 time unit, when the aggregate downloading rate is com-
puted.
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Figure 2: Pull phase

the so-called constrained striping and coding data placement
schemes. In contrast to full striping, these allow a box to
download a video from a small number of boxes. This is
useful when the number of simultaneous connections that a
box can support is constrained. We then state an optimality
property of the coding scheme, in terms of the demand rates
it can accommodate.

3.1 Full-Striping scheme
A full-striping scheme stripes each window of a movie to

all M boxes. Specifically, every window of size W is divided
into M blocks of size W/M and each block is pushed to
only one box proactively. Consequently, each box keeps a
distinct block of a window. A full copy of a given window
is reconstructed by downloading (M − 1) distinct blocks for
the window in parallel from (M − 1) boxes on demand2.

A box serves admitted requests according to the Processor
Sharing (PS) policy, forwarding its blocks of the requested
video to requesting boxes. PS is an adequate model of fair
sharing between concurrent TCP connections, when there
is no round-trip time bias and the bottleneck is indeed the
upstream bandwidth.

We further impose a limit on the number of requests that
a box can serve simultaneously. Specifically, to be able
to retrieve the video at a rate of Renc (see Table 1), one
should receive blocks from each of the M − 1 target boxes
at rate at least Renc/M . Hence we should limit the num-
ber of concurrent requests on each box to at most Kmax :=
⌊Bup ∗ M/Renc⌋, where Bup is the upstream bandwidth of
each box.

We envision two approaches to handle new video down-
load requests that are blocked because one of the M − 1
required boxes is already serving Kmax distinct requests. In
the first approach, we simply drop the new request. In the
second approach, each of the M − 1 sub-requests generated
by the new request is managed independently at each tar-
get box. If the number of concurrent jobs at the target box
is below Kmax, then the sub-request enters service directly.
Otherwise, it is put in a FIFO queue that is local to the
serving box, and waits there till it can start service.

We refer to the first approach as the blocking model, and
to the second as the waiting model.

3.2 Optimality of full striping
We now establish optimality of full striping under waiting

2Note that (M − 1) boxes are used rather than M because
a viewer itself is one of the M boxes.



Table 1: Definition of key parameters
Parameter Definition

Li size of movie i in bytes
M Total number of boxes in a Push-to-Peer system
Renc Video encoding rate/playout rate
Bdown Downstream bandwidth of each box. We assume Bdown is infinite, unless otherwise stated.
Bup Upstream bandwidth of each box. We assume Bup < Renc.
y maximum number of simultaneous incoming (or outgoing) connections a box can support
W Size of window in bytes

model. Let us introduce the following stochastic model for
demand. Requests for movie j occur at the instants of a
Poisson process with rate νj . Each such request originates
from box m with probability 1/M , for all m ∈ {1, . . . , M}3.

Denote by Lj the size of movie j, and by Aj,m the amount
of memory dedicated to movie j on box m. Then the average
size of a download request for movie j is Lj−(1/M)

PM
m=1 Aj,m.

We shall assume that a single copy of each movie is stored
in the system, which can be translated into the constraint
PM

m=1 Aj,m = Lj . It is natural to ask whether under such
constraints, there exists a placement strategy that is opti-
mal with respect to the demand rates νj that it can accom-
modate. The following shows that full striping is such an
optimal placement strategy:

Proposition 1. Assume that a single copy of each movie
is stored in the whole system. Then under full striping data
placement, and for the waiting model above described, the
system is stable (i.e., download times do not increase un-
boundedly) whenever the Poisson arrival rates νj verify

J
X

j=1

νjLj (1 − 1/M) < M ∗ Bup. (1)

Moreover, for any other placement strategy specified by the
Aj,m, the set of demand rates νj that can be accommodated
without rejection is strictly smaller than that under full strip-
ing.

Proof. Note that for any placement policy in which movies
are stored only once, the work arrival rate at a given box m
is given by

ρ(m) := (1 − 1/M)
J
X

j=1

νjAj,m. (2)

Under full striping, one has Aj,m = Lj/M . Thus condi-
tion (1) is equivalent to the condition that the work arrival
rate ρ(m) is less than the service rate Bup of box m. This
condition does not depend on m, and is thus the necessary
and sufficient condition for stability of the whole system.

Consider now a different placement strategy, for which
there exists a pair (j∗, m∗) such that Aj∗,m∗ > Lj∗/M . For
any demand rates νj , j = 1, . . . , J , assume that there ex-
ists a pull strategy that can stabilise the system under such
demand. Then necessarily, for all m ∈ {1, . . . , M}, one has
ρ(m) < Bup. Summing these inequalities one obtains (1),
hence such demand can also be handled under full striping.

3This assumption of symmetry between boxes can be re-
laxed. Placement strategy and Proposition 1 below would
then need to be suitably modified.

Consider now a particular demand vector where νj = 0
for all j 6= j∗, and

νj∗(1 − 1/M)Lj∗ = MBup − ǫ,

for some small ǫ > 0. Clearly this verifies (1). However, the
load placed on box m∗ is precisely

ρ(m∗) = (1 − 1/M)νj∗Aj∗,m∗ .

By our choice of (j∗, m∗), we thus have that

ρ(m∗) > (1 − 1/M)νj∗Lj∗/M.

Thus for small enough ǫ, one must have ρ(m∗) > Bup.
Therefore, this box is in overload and the system cannot
cope with such demands, while full striping can.

3.3 Data placement and pull policies under
limited number of connections

We describe how the full striping scheme can be extended,
given a constraint that the maximum number of simultane-
ous connections that a box can serve is bounded by y. We
propose constrained-striping scheme and coding scheme that
limit the maximum number of simultaneous connections to
the parameter y.

3.3.1 Constrained-Striping scheme
In constrained-striping scheme, the M boxes are organized

in ⌊M/(y + 1)⌋ disjoint sets. A window of size W is striped
into (y+1) blocks of size W/(y+1) and each block is pushed
to one single box for each set. A window of a movie can
be reconstructed by downloading y distinct blocks for the
window in parallel from y boxes in one of the sets.

Consequently, each box in a set keeps a distinct block of a
window, and M boxes will have ⌊M/(y+1)⌋ copies of movies
collectively after the data placement.

3.3.2 Coding scheme
In addition to constrained striping, we also propose a cod-

ing scheme that applies rateless coding [16, 15]. It is known
that rateless codes such as LT code [15] can generate infinite
number of unique so called coded symbols by combining the
k source symbols of the original content. For decoding any
set of (1+ǫ)∗k distinct coded symbols are needed, and the k
source symbols can be reconstructed with high probability.
In practice, the overhead parameter ǫ can be in [0.03, 0.05],
depending on the specific coding that we use [16, 5].

For the specific case of Push-to-Peer, to ensure that a
peer can reconstruct a window of size W by downloading
from y different boxes, each box has to serve a fraction of
size W ∗ (1 + ǫ)/(y + 1) of the window. y is the maximum



number of simultaneous connections that a box can support
as described previously.

The coding scheme we propose consists in dividing each
window into k source symbols4, and generate C ∗ k = (M ∗
(1 + ǫ)/(y + 1)) ∗ k coded symbols. We call C the expansion
ratio, where C > 1. For each window, the C ∗k symbols are
evenly distributed to all M boxes such that each box keeps
C ∗ k/M = (1 + ǫ) ∗ k/(y + 1) distinct symbols. A viewer
can reconstruct a window of a movie by downloading any
C ∗k ∗ y/M distinct symbols in parallel from arbitrary a set
of y boxes out of (M − 1) boxes.

The coding scheme is similar to full-striping scheme in
the sense that distinct (coded) symbols are striped to all M
boxes. However, unlike full-striping scheme, we only need
to download from any y boxes.

3.3.3 Pull policy for coding scheme
We now define the pull strategy used for the coding scheme.

We assume a maximum number of requests, K, can be pro-
cessed concurrently on each box. Each box has a queue from
which it selects requests that will be treated by the box.

Movie download requests are broken into y sub-requests,
that occupy consecutive slots in the queue of each box, ex-
cept for the box that issued the request. When a box be-
comes available to serve a new (sub-)request, it selects the
one closest to the head of its queue, and for which it has
not started serving another sub-request that is part of the
same global request. Once a sub-request has been selected
by a box, the sub-request is removed from the queue of all
other boxes. Each box then uses Processor Sharing among
currently handled sub-requests.

3.4 Optimality of coding scheme
We assume additional storage is used per movie as de-

scribed before. Specifically, we assume that a total storage
capacity of C∗Lj is devoted to movie j, where C corresponds
to expansion ratio introduced in the previous section. The
solution based on encoding assumes that for movie j, a total
quantity of Aj,m ≡ C ∗ Lj/M data is stored on each indi-
vidual box m. This data consists of symbols, such that for
any collection of y + 1 = M/C boxes, each movie can be
reconstructed from the joint collections of symbols from all
these y + 1 boxes. We then have the following proposition:

Proposition 2. By using the pull strategy described in
section 3.3.3, the system is stable whenever the Poisson ar-
rival rates νj verify

J
X

j=1

νjLj (1 − C/M) < M ∗ Bup, (3)

and this is the best possible for the amount of memory used
by the system.

In the interest of space, we omit the proof, which will appear
in a companion technical report. We only note that the
average amount of data that needs to be downloaded for a
request for movie j is Lj(1−C/M) when the overall storage
devoted to movie j is CLj , and hence the left-hand side

4With rateless codes the greater k, the greater is the proba-
bility to reconstruct content with small overhead [5]. Conse-
quently, the symbol size should be as small as possible, and
therefore in our case symbol size should be equal to packet
size (i.e. MTU).

of (3) is indeed the rate at which work enters the system,
while the right-hand side is an upper bound on the service
capacity of the system. Thus with the assumed total storage
per movie, Condition (3) is indeed necessary to ensure the
existence of a pull strategy for which the system is stable.

4. PERFORMANCE ANALYSIS

4.1 Blocking model
We now propose simple models to predict the blocking

probability of the system in the blocking model for the dis-
tinct placement strategies we introduced.

We first consider full striping. In the actual system, the
number of requests in progress can vary from box to box,
essentially because a requesting box does not place a request
on itself. Also, the overall service speed varies between (M−
1)Bup and M ∗Bup depending on the system state: when a
single video download is taking place in the whole system, it
proceeds at speed (M − 1)Bup, while an overall service rate
of M ∗ Bup is achieved when sub-requests are served on all
boxes.

However we consider simplified dynamics, where the num-
ber of sub-requests is the same on each box, and where the
total service speed is also constant. Specifically, we consider
a total service capacity of Btotal = M ∗Bup and assume this
is shared evenly among active downloads. The total amount
of data that needs to be downloaded for movie j playback
is then taken to be Lj(1 − 1/M), as in the actual system.
We assume Poisson arrival rate νj of download requests for
movie j, and a maximum number of concurrent downloads
of Kmax = ⌊Btotal/[Renc(1 − 1/M)]⌋. These simplified dy-
namics correspond to the classical M/G/1/K/PS model, the
blocking probability of which is given by (see e.g. [13])

P I
b :=

(1 − ρ)ρKmax

[(1 − ρKmax+1)]
(4)

where

ρ =

PJ
j=1 νjLj(1 − 1/M)

Btotal
· (5)

To model the performance under either constrained strip-
ing or coding schemes we make similar simplifying assump-
tions. We again assume that each box handles the same
number of sub-requests, so that the system state is captured
by the total number of movie download requests. However
we take into account the fact that each movie request is
served by a maximum of y boxes, by taking the total service
rate, when there are n movie requests, as the minimum of
Btotal and n ∗ Bdown where Bdown := y ∗ Bup.

Under such simplifying assumptions, the system state evolves
as a birth and death process on {0, . . . , Kmax}, where now
Kmax = ⌊Btotal/[Rency/(y + 1)]⌋. The birth rate equals
ν =

P

j νj in all states except Kmax, and the death rate in

state n is given by5

min(n ∗ Bdown, Btotal)

σ
5We would indeed have a Markovian birth and death pro-
cess if job sizes were exponentially distributed, and with
mean σ. Insensitivity results on Processor Sharing systems,
see e.g. [12] guarantee that the rejection probability is in-
sensitive to the actual service time distribution and justify
formula (6) for the case of mixtures of deterministic service
time distributions.



Table 2: Parameters for analysis
Parameter Value

Total number of boxes (M) 512
minimum block size 1024 bytes
Video encoding rate (Renc) 2Mbps
Upstream bandwidth (Bup) 1Mbps
Downstream bandwidth (Bdown) infinite
Size of Video (L) 2Gbytes
maximum number of 31
simultaneous incoming connection (y)

where σ is the average job size. This reads

σ =
X

j

(νj/ν)Lj(y/(y + 1))

in the case of constrained striping; we inflate this number
by (1 + ǫ), with ǫ = 5%, to reflect coding overhead when
considering coding.

For this system the blocking probability, which coincides
with the probability to be in state Kmax in steady state,
reads

P II
b :=

ρk
1/k! ρKmax−k

0
Pk

i=0 ρi
1/i! + (ρk

1/k!)(1 − ρKmax−k+1
0 )/(1 − ρ0)

(6)
where we have introduced the notations

ρ0 := νσ
Btotal

, ρ1 := ρ0
Btotal

Bdown
,

k := ⌊ Btotal

Bdown
⌋.

The derivation is a simple exercise, and is omitted for brevity.
Table 2 describes the parameters we use for numerical

evaluation of the above formulas. We plot the rejection rate
for each data placement scheme in Figure 3 using the pa-
rameters. Because of upstream bandwidth limitation (i.e.,
Renc/Bup = 2), the maximum number of viewers that can
be admitted into the system is at most 256. The x-axis in-
dicates the normalized arrival rate of user requests and the
y-axis indicates the rejection probability of user requests.

Over a wide range of arrival rates, the rejection rates do
not differ much between all three schemes. Perhaps sur-
prisingly, the full striping scheme consistently outperforms
constrained striping and coding schemes, even though the
last two schemes benefit from larger amounts of data stored
on each box. Compared to constrained striping and coding
schemes, full striping allows viewers to take advantage of
the bandwidth from all M boxes regardless of the number
of served viewers. Rather, in constrained striping and cod-
ing schemes, the maximum bandwidth share that a viewer
would get is at most y ∗ Bup regardless of the number of
served viewers. Because of ǫ overhead, the coding scheme
performs slightly worse than constrained striping.

4.2 Waiting model
In this section we consider performance of the system un-

der the waiting model. As for blocking, we make simpli-
fying assumptions to define a tractable performance model.
Specifically, we again assume that all boxes handle the same
numbers of sub-requests. Thus, an incoming movie request
is either accepted on all boxes, in which case it gets a fair
share of the overall system upstream bandwidth, if there
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Figure 3: rejection Probability

are less than Kmax jobs in the system. Otherwise, the job
is put in a single FIFO queue. Again Kmax is determined
to ensure that effective download rate is at least playback
rate Renc.

We call this system the FIFO+PS service system. While
its performance is well understood under the assumptions
of Poisson job arrivals and exponential service times, to our
knowledge its performance has not been analysed previously
when the assumption of exponential service times is relaxed.
One of our contributions is to provide such an analysis, in a
heavy traffic regime.

Notations are as follows. Service capacity is normalised to
1. Jobs arrive at instants of a Poisson process with intensity
νℓ. Jobs are i.i.d. with some fixed distribution; we denote
by σ a typical job service time. The number of jobs that
can be served concurrently is denoted Kℓ. The index ℓ is
introduced to set the stage for the heavy traffic analysis.
Indeed, denoting by ρℓ := νℓE(σ) the traffic intensity, we
shall assume that, as ℓ tends to infinity, the load approaches
1 from below:

ρℓ < 1, ℓ ≥ 1; lim
ℓ→∞

ρℓ = 1.

We shall further assume the existence of a positive number
m such that:

lim
ℓ→∞

(1 − ρℓ)Kℓ = m.

We then have the following result, the proof of which is
deferred to the appendix:

Theorem 1. Assume that the service time distribution is
a finite mixture of Exponential distributions. Denote by Zℓ

the number of jobs in steady state in the ℓ-th system. One
then has the following convergence, for all t > 0:

lim
ℓ→∞

P
“

(1 − ρℓ)Z
ℓ > t

”

=

(

e−m−2(t−m)σ2/σ2

if t > m,
e−t if t ≤ m.

(7)
Furthermore, denoting by W ℓ the waiting time of a job in
steady state in the ℓ-th system, one has the following con-
vergence, for all t ≥ 0:

lim
ℓ→∞

P
“

(1 − ρℓ)W
ℓ > t

”

= e−m−2tσ/σ2

. (8)



In particular the probability of not waiting satisfies

lim
ℓ→∞

P(W ℓ = 0) = 1 − e−m. (9)

Remark 1. Although we have established the theorem only
for the case of service times that are mixtures of exponential
distributions, we expect it to hold more generally.

We now indicate how to use this result. For given system
parameters, we approximate the distribution of the waiting
time of an arbitrary job as follows:

P(W ℓ > t) ≈ e−(1−ρℓ)[Kℓ+2tσ/σ2]. (10)

4.3 Application: sizing prefixes
We now show how to use the previous results to further

optimize content placement assuming extra storage is avail-
able. We again assume there are J movies, all encoded at a
constant bit rate Renc, and denote by Lj the size of movie
j.

For movie j, we assume that a prefix of size Pj is stored
locally on each box. This ensures that each user can play
back movie the first tj := Pj/Renc seconds of movie j with-
out downloading extra content. We further assume that en-
coded symbols are created and placed on each box so that
for each movie j, its remainder can be reconstructed from
the symbols present at any y + 1 boxes.

Let D denote the memory space available on each box.
The above described placement strategy will be feasible pro-
vided the constraint below is satisfied:

J
X

j=1

Pj + (Lj − Pj)/(y + 1) ≤ D. (11)

Denote by νj the rate of requests for movie j. The amount
that needs to be downloaded for playback of movie j is then

σj =
y

y + 1
(Lj − Pj). (12)

Indeed, the prefix of size Pj is stored locally, as well as a
fraction 1/(y + 1) of the remainder of the movie. The nor-
malised load on the system is thus:

ρ =

PJ
j=1 νjσj

Btotal
. (13)

4.3.1 Blocking probabilities
We first consider performance under blocking. The maxi-

mum number of concurrent jobs is Kmax = ⌊Btotal/[Rency/(y+
1)]⌋. Blocking probability is given by Formula (4) in the
particular case where y + 1 = M , that is to say under full
striping. This probability is then minimised by making the
load as small as possible.

As is easily seen, to minimise the load ρ as given by (13)
and (12) under memory constraints (11) one should aim to
cache locally the most popular movies in full.

4.3.2 Waiting times
We now assume FIFO queueing rather than rejection of

requests initiated at times where number of concurrent re-
quests equals N .

The evaluations (10) give us an approximation of the dis-
tribution of the delay W between request initiation and
download beginning. The actual delay can be reduced be-
cause playback can start tj seconds before download starts.

This yields the following expression for the average actual
delay D̄j experienced by requests for movie j:

D̄j = E [max(0, W − tj)]

=
R∞

tj
(x − tj)

2σ(1−ρ)

σ2
e−(1−ρ)[Kmax+2xσ/σ2].

We thus obtain the formula

D̄j =
σ2

2σ(1 − ρ)
e−(1−ρ)[Kmax+2tjσ/σ2]. (14)
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Figure 4: waiting time against prefixes balanced
popularity (ν1 = ν2 = 0.99, Renc = Btotal = 1, L1 =
L2 = 1, P1 + P2 = 1, y ≫ 1)
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Figure 5: waiting time against prefixes distinct pop-
ularity (ν1 = 0.99, ν2 = 0.5, Renc = Btotal = 1,
L1 = L2 = 1, P1 + P2 = 1, y ≫ 1)

We use a simple example to illustrate how a fixed amount
of memory in a box can be optimally allocated to movies
with same or distinct popularities to preload prefixes of
movies. Figures 4 and 5 show plots of the mean waiting
times Dj obtained from Formula (14). In each case, there
are two movies, and there is a fixed amount of memory that
can be used for prefixes of one movie or the other. In Figure



4, the popularities of both movies are same. The figure in-
dicates that in case of balanced popularity for two movies,
the best for both movies is to get equal prefixes. Note that
varying prefixes does not change load here. Also, it does not
change the average service time σ̄. So it would seem that
one movie would benefit from having a larger prefix. It is
however not the case, because unbalanced prefixes lead to
large variance of service times and thus large second moment
σ2.

In Figure 5, we have distinct popularities, with movie 1
roughly twice as popular as movie 2. The figure indicates
that it is beneficial to both movies to have the prefix memory
devoted to movie 1. Here, by storing large prefixes for movie
1, we reduce the system load ρ, and this is the leading effect.

5. THE CASE OF UNCONTROLLED ENVI-
RONMENTS

In this section, we discuss adaptations of our techniques to
make them applicable to uncontrolled environments. These
concern mostly the pull phase, and we assume throughout
this section that original content placement has been done
according to the coding strategy previously defined in Sec-
tion 3.

We first propose a distributed randomized policy for ini-
tial job placement. This does not rely on a central control
server, which was necessary to implement the job placement
strategies we proposed for controlled environments in Sec-
tion 3.

We also discuss how to cope with changes in uplink band-
widths of boxes. In an environment where boxes are con-
trolled by an ISP, the ISP can guarantee that a fixed amount
of bandwidth is devoted to the Push-to-Peer service. In
uncontrolled environments such as the public Internet, the
Push-to-Peer service may compete with other application
traffic on the Internet, and available bandwidth may thus
change. We show how one can hedge against such changes
by downloading from more boxes than strictly necessary –
thereby exploiting the flexibility enabled by content coding–
and also propose a job migration strategy to reconfigure job
placement after a change in bandwidths.

5.1 Randomized job placement
The strategy we consider for initial job placement is as

follows. When a download request is generated, d distinct
boxes are chosen at random from the overall collection of
M boxes. The load, measured in terms of fair bandwidth
share that a new job would get, is measured on all probed
boxes. Finally, sub-requests are placed on the y least loaded
boxes among the d probed boxes, provided that each of the
y sub-requests gets a sufficiently large fair bandwidth share,
i.e. larger than or equal to (y/(y+1))Renc with our previous
notation. If any of the least loaded boxes cannot guarantee
such a fair share, then the whole request is dropped.

We assume in the present sub-section that each box has
a fixed overall upstream bandwidth of Bup (this is relaxed
in the second half of the section). Thus the maximum num-
ber of sub-requests on each box is Kmax = ⌊Bup/[y/(y +
1)Renc]⌋.

Many results are available on the performance of related
randomized load balancing schemes. If we assume Poisson
arrivals of requests at rate λ ∗ M/y, no rejection (Kmax =
∞), y = 1 (requests generate a single sub-job) and expo-

Table 3: Definition of key parameters
Parameter Definition

M Total number of jobs
Kmax Maximum queue size for each box
y Number of parallel sub-jobs
d Number of boxes probed
µ service rate of a processor
Mλ/y Arrival rate of jobs
pi fraction of boxes with i sub-jobs

nential job size distribution, we have exactly the model an-
alyzed by Vvedenskaya et al. [24] (see also Eager et al. [8]
and Mitzenmacher et al. [18]). For this system they show
that, in the large M limit, in steady state the fraction φi of
all M boxes that contain at least i jobs is given by

φi = ρ
di

−1

d−1 ,

where ρ is the normalized load on each box.
The system we consider differs by the fact that there are

several sub-jobs, and by the possibility of job rejection. It is
however amenable to a similar analysis. We now determine
fixed point equations that characterize the fraction of boxes
holding a given number of sub-jobs in equilibrium. We do
not claim the derivation is rigorous, but instead validate it
by simulations.

Notations used in the analysis are summarized in Ta-
ble 3. The heuristic derivation proceeds as follows. Fix
i ∈ {0, . . . , Kmax}. For a new request, denote by X<i (re-
spectively Xi, X>i&<Kmax and XKmax) the number of sam-
pled boxes with less than i jobs (respectively i, more than
i and less than Kmax and Kmax). The vector of these four
quantities follows a multinomial distribution with parame-
ters d and (p<i, pi, p>i&<Kmax , pKmax), where

p<i :=
X

j<i

pj , p>i&<Kmax :=
X

i<j<Kmax

pj .

Denote by Fi(u, v, w, z) the probability that this multino-
mial distribution puts on the vector (u, v, w, z). Its depen-
dence on the parameters pj is not made explicit to simplify
notation. Denote by Gi the expected number of boxes which
previously had i jobs and receive a new one from such a new
request. Then this can be written as

Gi =
X

u,v,w,z

Fi(u, v, w, z) min(v, max(0, y − u)) 1z≤d−y.

Indeed the factor 1z<d−y retains only terms in the sum-
mation where all sub-jobs can get enough bandwidth, and
the term min(v, max(0, y − u)) counts the number of least
loaded boxes that currently have i jobs. With such notation
at hand write the heuristic differential equation:

d

dt
Mpi = M(λ/y)(Gi−1 − Gi) − µM(pi − pi+1).

The rationale is that new boxes with i jobs appear at rate
Mλ/yGi−1 because of extra jobs being placed on boxes pre-
viously holding i− 1 jobs, and also at rate µMpi+1 because
of departures from boxes previously holding i + 1 jobs. The
rationale for departure rates is similar.

The fixed point equation for pi is then obtained by setting
the right-hand side of the previous equation to 0. Introduce



now the notation

λi :=
λ

y

Gi

pi
·

The fixed point equations may then be written as

pi+1µ = λipi, i = 0, . . . , Kmax − 1.

Since
PKmax

i=0 pi = 1, we obtain in turn

p0 = 1

1+
PKmax

i=1
[(

Qi−1

j=0
λj)/µi]

(15)

pn =
Qn−1

j=0
λj

µn−1 p0, n = 0, . . . , Kmax. (16)

Note that the parameters λi in the right-hand sides of these
expressions depend on the pi’s themselves. The fixed point
equations (15), and (16) cannot be solved explicitly. How-
ever we obtain a numerical approximation by applying iter-
atively the function specified by (15), and (16) on an initial
guess for the pi’s. We observed fast numerical convergence
of the iterations in our experiments. Once the parameters
pj are determined, the rejection probability is determined
according to the formula

preject =
d
X

i=d−y+1

 

d

i

!

pi
Kmax

(1 − pKmax)d−i.
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Figure 6: Numerical solutions for rejection proba-
bility using the proposed load balancing scheme

Figure 6 shows the results we obtain for distinct choices
of parameters (y, d) for varying normalized load ρ = λ/µ,
and setting Kmax to 3.

Figure 7 is obtained by simulation, using M = 50 boxes.
The results match reasonably well those in Figure 6. We
believe that the fixed point equations we just described are
accurate in the large M limit.

More importantly, we observe that even at normalised
loads as high as 100%, the rejection probabilities remain
small: below 15% when only one additional box is probed
and down to 5% when three additional boxes are probed.

5.2 Handling upstream bandwidth variability
This section discusses ways to cope with changes in avail-

able upstream bandwidth. More precisely, we address the
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Figure 7: Simulation result for rejection probability
using the proposed load balancing scheme

following two possible scenarios: (a) Upstream bandwidth di-
versity : Upstream bandwidth of a box is consistently smaller
than upstream bandwidth of other boxes during a suffi-
ciently large time period. (b) Upstream bandwidth fluctu-
ations: The average bandwidth of a box does not change,
however, the fluctuation increases the variability of upstream
bandwidth.

We propose two complementary strategies to cope with
the above two problems.

The first strategy called overbooking strategy, addresses
bandwidth diversity and allows a viewer to download more
symbols from boxes having large bandwidth, by placing ex-
tra symbols in each box in push phase. So far we have
assumed that we download content from the smallest pos-
sible number of boxes, from which content can be decoded.
In that case, effective download rate is constrained by the
slowest box. Overbooking basically amounts to download
from more boxes than strictly needed, either by increasing
the limit on the maximum number of connection, or by in-
creasing the amount of coded data pushed on the boxes.

Overbooking may also be used to overcome bandwidth
fluctuations: by staying long enough with a set of boxes, we
absorb the fluctuations over time. However, to apply such
policy a precise characterization of bandwidth fluctuations
is needed. Having a precise bandwidth fluctuation model
is difficult and we therefore rather propose the following
strategy that is complementary to the overbooking strategy.

The second strategy called job-migration strategy, addresses
bandwidth fluctuations and consists in migrating a viewer’s
request from the box serving the request to another box hav-
ing more available uplink bandwidth, when the downloading
rate goes below some threshold.

We calculate the time it takes to reconfigure the system
under bandwidth fluctuation. The timescale of bandwidth
fluctuation should be larger than the time to reconfigure the
system, that is in fact a function of probing frequency. Note
also that our analysis also allows to dimension the playout
buffer, since this one should be larger than the time it takes
to reconfigure the system.

5.2.1 Overbooking strategy



We now consider the issue of overbooking resources in or-
der to cope with fluctuating bandwidth. Rather than down-
loading exactly equal number of symbols in parallel from y
boxes, a viewer can be allowed to download more symbols
from the boxes with larger upstream bandwidth than from
the boxes with smaller upstream bandwidth. It can be made
possible by placing more symbols (preferably in as small size
as possible) to each box in push phase.

More specifically, assume each box contains a quantity
(C/M)W of symbols of data for each data window of size W .
Assume symbols are small enough so that their granularity
can be ignored. Let a peer download data from y other
peers, with y ≥ z = M/C−1, and let the resulting download
speeds be v1 ≥ v2 ≥ . . . ≥ vy . z is the minimum number
of boxes that a viewer needs to contact to reconstruct the
window. We now determine the overall speed at which data
can be recovered.

The time T needed to reconstruct the original window of
size W must be such that

y
X

i=1

min((1/(z + 1))W, viT ) = (1 − 1/(z + 1))W.

Indeed, the minimum in the summation term represents the
amount of data from the window of interest that can be
downloaded from the i-th peer in time T . Given a band-
width diversity model, the above characterization should al-
low to determine the probability that window download is
to slow. In turn it can inform selection of parameters z and
C.

5.2.2 Job migration strategy
We now consider the issue of rebalancing load after a

change of available bandwidth resources at the boxes.
The precise scenario is as follows. The M boxes have

available uplink capacities Ci, i = 1, . . . , M . Initially there
are Ni jobs on box i for all i = 1, . . . , M . Load balancing
operates as follows. Each job, at the instants of a Poisson
process of rate β, selects a box uniformly at random from
all available boxes. Assume the job was initially placed on
box i, and samples box j. Then it migrates to box j if and
only if the following two conditions are met. First, it will
get a larger bandwidth share by doing so, that if Ci/Ni <
Cj(Nj +1). Second, by migrating, it won’t let the fair shares
obtained at the target box j go from above the playback rate
Renc to below Renc, i.e. migration is prevented if Cj/Nj ≥
Renc > Cj/(Nj + 1).

It should be clear that the capacity profile affects the
speed at which this scheme will manage to balance the al-
locations obtained by each job. Indeed, if all capacities Ci

equal zero except for the capacity C1 of the first box, per-
fect load balancing is achieved by migrating all jobs to box
1. However each job has a probability of only 1/M of dis-
covering the correct box, hence a very long time to even
approximate load balancing when the number of boxes, M
is large.

With some control on the imbalance of the capacity profile
Ci, it is nevertheless possible to derive some results on the
speed at which such load balancing performs. We will more
specifically be concerned with the time till all jobs get a
target bandwidth share of Renc

6. To this end introduce the

6Note that this analysis assumes a job-size of Renc, i.e. we
do not consider a job is broken down into y sub-request.

following notations:
(

Ki := ⌊Ci/Renc⌋, i = 1, . . . , M,

δ := 1 −
PM

i=1
Ni

P

M
i=1

Ki
.

In words, Ki is the number of jobs that can be offered a
bandwidth of Renc at box i, and δ characterises the frac-
tion of the number of extra jobs that could be supported by
the system while still getting a target capacity of Renc to
the total number of jobs that can be provided such target
capacity.

We then have the following simple result:

Lemma 1. Assume that δ is strictly positive. Then the
fraction of boxes which could host an additional job and still
provide a bandwidth share of Renc to all supported jobs is at
least

f := δ
K

maxM
i=1 Ki

, (17)

where K is the average of the quantities Ki over all boxes i.

Proof. By definition of δ, the total number of jobs that
could be offered a bandwidth of Renc given the current ca-
pacity profile {Ci}

M
i=1 reads

M
X

i=1

Ki =
M
X

i=1

Ni + δ
X

i

Ki.

Thus, for any specific placement of the jobs, there are at
least δ

P

i Ki extra jobs that could be accepted in the system
and still get a bandwidth share Renc. However, no more
than maxiKi such jobs could be placed on any box i, by
definition of Ki. Hence it follows that the number M∗ of
boxes that can accept an additional job and still provide a
fair share of at least Renc to all its jobs verifies

M∗ M
max
i=1

Ki ≥ δ

M
X

i=1

Ki,

from which Equation (17) follows.

It is interesting to rewrite expression f as follows:

f =
K − N

maxM
i=1 Ki

·

It then becomes apparent that the probability that a ran-
domly selected box can host an additional job while still
providing a bandwidth of Renc is at least equal to the ratio
of the average number of extra jobs that could be added per
box, to the maximal number of jobs that can be supported
by any box.

This result allows us to obtain upper bounds on the time
for the system to reconfigure after a change in available
bandwidth capacities:

Proposition 3. Under Lemma 1’s assumptions, the time
for any job to successfully migrate to a box where it receives
a bandwidth share of Renc is not larger than an Exponential
random variable with parameter βf , where β is the probing
rate, and f is defined in (17).

Since this does not really affect the results of this analy-
sis, we keep it to the reader as a simple exercise to do the
analysis in the case with sub-request.



Let Nbad denote the number of jobs that initially receive
less than Renc. Then assuming fixed β and f , in the limit
when Nbad becomes large, the time Treconf to successful re-
placement of all jobs satisfies

Treconf ≤
1

βf
log(Nbad) + O(1). (18)

The time Treconf (x) to successful replacement of a fraction
x of jobs reads

Treconf (x) ≤
1

βf
log

„

1

1 − x

«

+ o(1). (19)

Proof. The first statement of the proposition is a direct
consequence of Lemma 1: each job probes at rate β, and
each such probe is to a box that can host it and provide
a bandwidth Renc with probability at least f . By erasing
with probability (1−f) the time points of a Poisson process
of rate β, one obtains a Poisson process with rate βf . Thus
the time till a “good” box is probed is at most the first
instant of a Poisson process with rate βf , hence at most an
Exponentially distributed random variable with parameter
βf .

To establish (18), let Tn denote the time to successful
reconfiguration of the nth initially badly placed job, for n =
1, . . . , Nbad. By the first part of the proposition, one has for
all x ∈ R:

P
“

sup
Nbad
n=1 Tn > log(Nbad)+x

βf

”

≤ 1 −
h

1 − e− log(Nbad)−x
iNbad

= 1 −
h

1 − 1
Nbad

e−x
iNbad

→ 1 − exp(−e−x)

as Nbad → ∞. This establishes (18) (it should be understood
in this expression that the O(1) term is in fact a random vari-
able; this is sometimes referred to as “O(1) in probability”).

To establish (19), note that for any ǫ > 0, the probability
that Treconf (x) is less than 1/(βf)[log(1/(1−x))+ǫ is larger
than the probability that a binomial random variable with
parameters Nbad and

1 − exp(−ǫ − log(1/(1 − x))) = 1 − (1 − x)e−ǫ

is larger than xNbad. Standard properties of Binomial dis-
tribution entail that this holds with probability close to 1 as
Nbad → ∞, and the result (19) follows.

6. RELATED WORK
The use of peer-to-peer networks for streaming video on

the Internet is a topic that has received some recent atten-
tion [6, 26, 19, 23]. However, most of the efforts have focused
on efficient tree and mesh construction assuming the up-
stream bandwidths of many or all of peers are strictly larger
than video playback rate. This naive assumption enables
those p2p systems to scale to support arbitrary large num-
ber of clients. On the contrary, we assume that upstream
bandwidths of all peers are strictly smaller than video play-
back rate, that is in fact true in most of access networks,
particularly in DSL networks that we are focusing on. More
recently, Dana et al. [7] and Tewari et. al [22] proposed
BitTorrent-based live streaming service under the same as-
sumption of limited upstream bandwidth. In both propos-
als, the upstream bandwidth limitation is overcome by the
assistance of server-based stream delivery in their proposed
systems. However, the Push-to-Peer system does not as-
sume the support from the content server after content is

proactively pushed to peers and persistently stored before
the actual peer-to-peer transfers.

Load balancing strategies have also been investigated in
the context of job scheduling in distributed systems and
more general bins and balls problems [8, 17, 18]. To the
best of our knowledge, all of the proposed load balancing
schemes are targeted to balance loads of independent jobs.
On the contrary, we address the problem of balancing load of
sub-requests from a job, that should be co-scheduled ideally.
More recently, the load balancing in case of bulk arrivals of
jobs has been investigated by Adler et al. [1], however, the
balancing decision is made per job rather than per the set
of jobs arriving together. Our proposed scheme collectively
balance all sub-requests for a job.

Another related area of work is the data placement and
pull scheme for video streaming services. Several methods
have been proposed in the literature [14, 20, 21]. Par-
ticularly, random duplicated assignment strategy of data
blocks is proposed for VoD servers by Korst [14] to ad-
dress the problem of disk failure. However, we use a cod-
ing scheme that addresses the problem of box failures. The
prefix prefetching scheme for p2p video streaming [20, 21]
cannot be directly applicable to our case because it requires
that upstream bandwidth of a peer should be strictly larger
than video playback rate.

Rateless coding schemes have been proposed by [5, 16,
15]. While these works discuss how to use the codes to
download files using multicast/broadcast transmissions [5]
or using peer-to-peer networks [16], none of these works ad-
dress the usage of coding for video streaming or video-on-
demand. Other work proposed the usage of network coding
to accelerate file download in peer-to-peer networks [9] or
to ameliorate VoD for p2p [2]. Because of the push-phase,
our approach does not require that peers serve content that
they downloaded previously from other peers. Therefore the
usage of network coding is not appropriate to our scenario.

7. CONCLUSION AND FUTURE WORK
We proposed Push-to-Peer, a novel peer-to-peer approach

to cooperatively stream video using push and on-demand
pull of video contents. We showed the theoretical upper
performance bounds that are achieved if all resources of
all peers are perfectly pooled, and present the placement
(namely full-striping and coding scheme) and pull policies
that achieve those bounds. However, perfect pooling is only
possible with global knowledge of system state, which in
practice is not feasible. Therefore, we discussed several dis-
tributed load balancing algorithms adapted to either fixed
or fluctuating bandwidth. Rather than giving precise per-
formance results, we propose models and analyses that allow
to have insights on the behavior of each of those algorithms.

Future work will address more precise bandwidth fluctu-
ation models, that take into account user behavior and the
scale of the bandwidth fluctuation. These models may lead
us to refine our present analysis and strategies, as well as
identify new strategies that can cope with such fluctuations.

We would like to extend our analysis to include the case
where multiple movies of different popularity are served by
the system. Even if our first analysis discusses the impact
of prefix attribution to different movies regarding blocking
probability and waiting time, we think that there is space for
improvement. The non-uniform size of prefixes preloaded for
different movies makes the use of processor sharing schedul-



ing less effective, because the deadline for downloading a
window is determined by the size of preloaded prefix. To
address this issue, we plan to adopt Earliest Deadline First
(EDF) scheduling policies developed for multiprocessors.

Finally other features like VCR functionality support or
multicast assistance for downloads needs to be investigated.
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9. APPENDIX
Appendix

Proof. (of Theorem 1) The service time distribution is
assumed to be a finite mixture of exponential distributions.
Let πi be the weight of the i-th component in the mixture,
and µi the parameter of the i-th exponential distribution,
i = 1, . . . , I . When it is clear from context that quantities
depend on the system index ℓ, we omit the subscript ℓ to
simplify notations.

We adopt the following description of the state space of
the system: a job, when it starts service, determines its type
i ∈ {1, . . . , I} according to the probability distribution {πi}.
Its type specifies the parameter of its exponential service
time distribution. We let Xi denote the number of type i
jobs in service, and Y the number of jobs currently waiting.
Thus one has the constraint that

PI
i=1 Xi ≤ N , and Y = 0

when
PI

i=1 Xi < N (jobs enter service as soon as a service
slot is freed).

It is easily seen that ((Xi)i=1,...,I , Y ) is a Markov process.
Let q((X,Y ), (X ′, Y ′)) denote the transition rate from state
(X, Y ) to state (X ′, Y ′) for this process. Also, denote by ei

the i-th unit vector in RI . It is then easily seen that the
non-zero transition rates are specified by:

q((X, Y ), (X, Y + 1)) = ν if
PI

i=1 Xi = N,

q((X, 0), (X + ei, 0)) = ν if
PI

i=1 Xi < N,
q((X, Y ), (X − ei + ej , Y − 1)) = µiXi/Nπj if Y > 0,

q((X, 0), (X − ei, 0)) = µiXi/
PI

j=1 Xj if Y = 0.

Define now the time- and space-rescaled processes, xi(t) =
(1 − ρ)Xi(t/(1 − ρ)) and y(t) = (1 − ρ)Y (t/(1 − ρ)). Using
results of Kurtz, and the fact that 1 − ρ → 0 as ℓ → ∞,
it can be shown that for any time interval [0, T ], there is
convergence in probability of the rescaled processes (x, y)
towards the set of fluid trajectories defined below. Process
convergence is for the uniform norm

||(x, y)−(x′, y′)|| := sup
t∈[0,T ]

"

|y(t) − y′(t)| +
I
X

i=1

|xi(t) − x′
i(t)|

#

.

To simplify notation, we note s =
PI

i=1 xi. The fluid tra-
jectories in the above statement are defined as non-negative
absolutely continuous functions y(t), xi(t) such that for al-
most every t ∈ [0, T ],

d
dt

y(t) = νf(t) −
PI

i=1 µi
xi(t)
s(t)

g(t),
d
dt

xi(t) = νπi(1 − f(t)) + πi

PI
j=1 µj

xj(t)

s(t)
g(t)− µi

xi(t)
s(t)

.

In the above, the functions f and g take their values in [0, 1],
and are such that f(t) = g(t) = 1 whenever y(t) > 0, and
f(t) = g(t) = 0 whenever s(t) < m. Also, the value for ν in
the first line is the limiting value, that is

ν := lim
ℓ→∞

νℓ =
1

PI
i=1 πi/µi

· (20)

This is just rewriting that the load reaches one in the ℓ → ∞
limit.

Using the fact that y(t) ≥ 0, it follows from the first
equation that when y(t) = 0, necessarily

I
X

i=1

µi
xi(t)

s(t)
g(t) = νf(t).

Thus by setting h(t) = 1 if y(t) > 0 or y(t) = 0 and
PI

i=1 xi(t) = n, and h(t) = 0 otherwise, one thus obtains

d

dt
xi(t) = πi

"

h(t)ν + (1 − h(t)
I
X

j=1

µj
xj(t)

s(t)

#

− µi
xi(t)

s(t)
.

We now establish the following

Lemma 2. Let

qi :=
πi/µi

PI
j=1 πj/µj

, j = 1, . . . , I,

and introduce the function

L(x) :=

I
X

i=1

xi log

„

xi

s

1

qi

«

.

Note that, up to a factor s =
PI

i=1 xi, this coincides with the
Kullback-Leibler divergence between the distributions {xi/s}
and {πi}. Then the function L(x(t)) is strictly decreasing
along a fluid trajectory x(t), except when

xi

s
= qi, i = 1, . . . , I.

Proof. Introduce the notation s =
PI

i=1 xi. Write

d
dt

L(x) =
PI

i=1
d
dt

xi [log(xi) − log(s) − log(qi)]
= h

s

P

i=1 [πiνs − µixi] [log(xi) − log(s) − log(qi)]

+ 1−h
s

P

i=1

h

πi

PI
j=1 µjxj − µixi

i

[log(xi) − log(s) − log(qi)] .

We show that both terms in the right-hand side are non-
negative. Using expression (20), the first term reads

h
PI

i=1 µi

»

πi/µi
P

I
j=1

πj/µj
− xi

s

–

[log(xi/s) − log(qi)]

= h
PI

i=1 µi

ˆ

qi −
xi

s

˜

[log(xi/s) − log(qi)] .

It is clear in this expression that each term in the sum is
non-positive, and the sum equals zero only if the distribution
(xi/s) coincides with the distribution (qi).

The argument for the second term goes as follows. One
has to establish the following inequality:

I
X

i=1

πi

I
X

j=1

µjxj log(xi/(sqi)) ≤

I
X

i=1

µixi log(xi/(sqi)), (21)

and that equality holds in the above only if xi/s ≡ qi. By
definition of qi, it holds that

πi =
qiµi

PI
j=1 qjµj

·

Introduce the notation uj = xj/(sqj). After division of both

sides of (21) by s
PI

j=1 µjqj , this reads, using the previous
expression for πi,

I
X

j=1

πjuj

I
X

i=1

πi log(ui) ≤

I
X

i=1

πiui log(ui). (22)

An inequality due to Hoeffding [10] (see also [25] and [4]
for more easily accessible references) states that, given two
random variables U , V with identical distributions, for any
two non-decreasing functions f, g : R → R such that f(U)
and g(U) have finite variances, one has:

E[f(U)g(V )] ≤ E[f(U)g(U)].



Note that the inequality (22) we need to prove is of that
form, with as non-decreasing functions f(U) = U and g(U) =
log(U). Finiteness of variances is trivially satisfied as the
random variables U take only finitely many values. This
establishes the desired inequality (22), and the equivalent
inequality (21).

Equality in (21) implies equality in (22). However, the
latter holds if and only the distributions of (f(U), g(V )) and
(f(U), g(U)) coincide; see e.g. [25]. As the functions f , g
are strictly increasing, this in turn holds if the distributions
of (U,V ) and (U, U) coincide. In the present case, this holds
only if ui = xi/(sqi) is constant. This concludes the proof
of the Lemma.

The lemma has the following consequence, the proof of which
we omit here.

Corollary 1. Consider any subsequence ℓ′ converging
to infinity, and such that the distribution of the rescaled state
vector (1 − ρℓ)(X

ℓ, Yℓ) of the ℓ′-th system in steady state
converges weakly to some limiting distribution as ℓ′ → ∞.
Then under the limiting distribution, with probability 1 it
holds that

Xi
PI

j=1 Xj

= qi, i = 1, . . . , I.

The weak convergence result (7) is then established as fol-
lows. The Pollaczek-Khinchin formula (see e.g. [3], p.183,
eq. (4.3.4)) characterises the Laplace transform of the work-
load V ℓ in the ℓ-th system in steady state as

E[e−αV ℓ

] =
α(1 − ρℓ)

α + νℓ[E(eiuσ − 1)]
.

Replacing α by (1− ρℓ)α in the above, and letting ℓ tend to
infinity, it readily follows that

lim
ℓ→∞

E[e−α(1−ρℓ)V ℓ

] =
1

1 + ν∞ασ2/2

Using the fact that ν∞σ = 1, we can readily identify the
right-hand side as the Laplace transform of an Exponential
random variable with mean σ2/2σ.

Noting that the workload V ℓ can be written as

V ℓ =
Y ℓ
X

n=1

σn +
I
X

i=1

Xℓ
i

X

n=1

σi,n,

where σn are i.i.d. service times drawn from the original
service time distribution, and σi,n are i.i.d. exponential ran-
dom variables with parameter µi, weak convergence of the
rescaled workload (1 − ρℓ)V

ℓ entails that the sequence of
rescaled state variables (1 − ρℓ)(X

ℓ, Yℓ) is tight. It further
entails that, for any limiting distribution, one has

P(σY +

I
X

i=1

1

µi
Xi > t) = e−2tσ/σ2

.

Combined with the result of the corollary, this guarantees
weak convergence of (1−ρℓ)(X

ℓ, Yℓ) to a distribution which
is such that with probability 1, Xi/S = qi, where S =
PI

j=1 Xj , S ≤ m, S < m implies Y = 0, and finally

P(σY + S
I
X

i=1

qi

µi
> t) = e−2tσ/σ2

Note now that

σ2 = 2
I
X

i=1

πi/(µ
2
i ).

The above equation can then be rewritten

P(σY + Sσ2/(2σ) > t) = e−2tσ/σ2

Take now x > m. One then has

P(S + Y > m) = P(σY + Sσ2/(2σ) > t),

with t = mσ2/2+σ(x−m). Plugging this value for t in the
right-hand side of the previous identity yields the first half
of (7). The second half follows from a similar argument.

The proof of (8) goes as follows. When the service box is
full, the departure rate from the service box is exactly

I
X

i=1

µiqi =
1

σ
·

One can thus map the probability of having a rescaled wait-
ing time larger than t to the probability of having a rescaled
number of jobs already waiting upon arrival of order t/σ.
Thus,

limℓ→∞ P((1 − ρℓ)W
ℓ > t) = P(σY + Sσ2/(2σ) > t + mσ2/(2σ)

= e−m−2tσ/σ2

.

Finally, to establish (9), write

limℓ→∞ P(W ℓ = 0) = limℓ→∞ P(Zℓ < Nℓ)
= 1 − e−m

in view of (7).


