A Brief Overview of 802.11 Wireless Networking

Alex C. Snoeren

CS6250: Computer Networking
November 10, 2011

(Some slides courtesy Lili Qiu & Nitin Vaidya)
Infrastructure vs. Ad hoc

Infrastructure network

wired network

ad-hoc network

AP: Access Point
IEEE 802.11 Infrastructure

- Mobile terminal
 - Application
 - TCP
 - IP
 - LLC
 - 802.11 MAC
 - 802.11 PHY
 - Access point

- Infrastructure network
 - LLC
 - 802.11 MAC
 - 802.11 PHY
 - 802.3 MAC
 - 802.3 PHY

- Fixed terminal
 - Application
 - TCP
 - IP
 - LLC
 - 802.3 MAC
 - 802.3 PHY
802.11 - Layers and functions

- **MAC**
 - access mechanisms, fragmentation, error control, encryption
- **MAC Management**
 - synchronization, roaming, MIB, power management
- **PLCP** Physical Layer Convergence Protocol
 - clear channel assessment signal (carrier sense)
- **PMD** Physical Medium Dependent
 - modulation, coding
- **PHY Management**
 - channel selection, MIB
- **Station Management**
 - coordination of all management functions

<table>
<thead>
<tr>
<th>DLC</th>
<th>LLC</th>
<th>MAC Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY</td>
<td>PLCP</td>
<td>PHY Management</td>
</tr>
<tr>
<td></td>
<td>PMD</td>
<td>Station Management</td>
</tr>
</tbody>
</table>
802.11 Physical Layers

- **802.11b - 2.4 GHz ISM band**
 - FHSS (Frequency hopping spread spectrum); deprecated
 - DSSS (Direct sequence spread spectrum)
 - Up to 11 Mbps

- **802.11a/g - 2.4 GHz ISM band / 5.0 GHz UNII band**
 - OFDM (Orthogonal frequency domain multiplexing)
 - Up to 54 Mbps

- **802.11n – 2.4/5.0 GHz bands**
 - Adds MIMO and other tricks to 802.11g
 - Up to 300-500 Mbps!

- Each backwards compatible with the previous ones
IEEE 802.11b

- **Data rate**
 - 1, 2, 5.5, 11 Mbit/s
 - User data rate max. approx. 6 Mbit/s

- **Transmission range**
 - 300m outdoor, 30m indoor
 - Max. data rate ~10m indoor

- **Frequency**
 - Free 2.4 GHz ISM-band
802.11b Physical Channels

- 12 channels available for use in the US
 - Each channel is 20+2 MHz wide
 - Only 3 orthogonal channels
 - Using any others causes interference

![Diagram of 802.11b Physical Channels]

US (FCC)/Canada (IC)

2400 2412 2483.5

2437

22 MHz

channel 1

channel 6

channel 11
Multipath Interference

- RF signals bounce off of objects (e.g., walls)
 - Reflected signals travel different distances to receiver
 - Difference in distance leads to difference in delay
- Limits effective modulation rate in 802.11b
Avoiding ISI: OFDM

- Break data up into multiple separate streams
 - Transmit each stream independently on different frequency
 - Pack frequencies so that they are orthogonal
802.11a/g/n ODFM PHY

- Each 20-MHz channel divided into 50 subcarriers
 - Subcarriers spaced appropriately, 4 used as “pilots”
802.11n: MIMO

- Use multiple physical antennae simultaneously
 - Spatial multiplexing: split data across antennae
 - Space-Time Block Coding: same data, encoded differently
 - Transmit beamforming: steer the signal toward the receiver
Carrier Sense Multiple Access

CSMA: listen before transmit
- If channel sensed idle: transmit entire packet
- If channel sensed busy, defer transmission
 - Persistent CSMA: retry immediately with probability p when channel becomes idle (may cause instability)
 - Non-persistent CSMA: retry after random interval

- But what about collisions?
CSMA/CA

- Impossible to hear collision w/half-duplex radio

- Wireless MAC protocols often use collision avoidance techniques, in conjunction with a (physical or virtual) carrier sense mechanism

- Collision avoidance
 - Nodes negotiate to reserve the channel.
 - Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit.
Hidden Terminal Problem

- B can communicate with both A and C
- A and C cannot hear each other

Problem
- When A transmits to B, C cannot detect the transmission using the carrier sense mechanism
- If C transmits, collision will occur at node B

Solution
- Hidden sender C needs to defer
When A wants to send a packet to B, A first sends a Request-to-Send (RTS) to B.

On receiving RTS, B responds by sending Clear-to-Send (CTS), provided that A is able to receive the packet.

When C overhears a CTS, it keeps quiet for the duration of the transfer.

Transfer duration is included in both RTS and CTS.
Problem: With many contending nodes, RTS packets will frequently collide

Solution: When transmitting a packet, choose a backoff interval in the range \([0, CW]\)

- CW is contention window

- Wait the length of the interval when medium is idle
 - Count-down is suspended if medium becomes busy
 - Transmit when backoff interval reaches 0

Need to adjust CW as contention varies
MACAW uses exponential increase linear decrease to update CW

- When a node successfully completes a transfer, reduces CW by 1
- In 802.11 CW is restored to CW_{min}
- In 802.11, CW reduces much faster than it increases

MACAW can avoid wild oscillations of CW when many nodes contend for the channel
Cute Hack

- We can use CTS to reserve the channel for ourselves
 - Don’t use RTS/CTS handshake, just back half
 - Called a CTS-to-self, simply transmit CTS before our packet

- Doesn’t solve hidden terminal, but does squelch
 - Means stations don’t need to be able to decode data frame

- 802.11g uses CTS-to-self to operate w/802.11b
 - 11g stations always send a CTS before sending packets encoded in a way (ODFM) that 11b stations can’t decode

- Much more efficient than full RTS/CTS
Challenge: Reliability

- Wireless links are prone to errors. High packet loss rate detrimental to transport-layer performance.

- Mechanisms needed to reduce packet loss rate experienced by upper layers
Link-layer ARQ

- When B receives a data packet from A, B sends an Acknowledgement (ACK) to A.
- If node A fails to receive an ACK, it will retransmit the packet.
Non-symmetric ranges

Interference “range”

Carrier sense range

Transmit “range”

DATA

A B C D E F
Other MACAW Features

- **Fairness:** Normally, each node wins the channel with equal probability
 - Nodes with multiple streams should be more aggressive
 - Abandoned in 802.11. Why?

- **Conservative collision avoidance**
 - Use a Data Sending (DS) packet to reserve the channel
 - 802.11 uses different length intervals and the NAV

- **Request-for-Request-to-Send**
 - Assume carrier sense range far larger than transmission range
802.11 MAC Modes

- Distributed Coordination Function (DCF) CSMA/CA
 - collision avoidance via randomized “back-off“ mechanism
 - minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)

- DCF w/ RTS/CTS
 - Distributed Foundation Wireless MAC
 - avoids hidden terminal problem

- Point Control Function (PCF) - *optional*
 - Access point polls terminals according to a list
 - We’re not going to discuss…
IEEE 802.11 DCF

- DCF is **CSMA/CA** protocol
 - Uses a Network Allocation Vector (NAV) to implement collision avoidance
- DCF suitable for multi-hop ad hoc networking
- Optionally uses RTS-CTS exchange to avoid hidden terminal problem
 - Any node overhearing a CTS cannot transmit for the duration of the transfer
- Uses ACK to provide reliability
IEEE 802.11

Pretending a circular range

RTS = Request-to-Send
IEEE 802.11

RTS = Request-to-Send

NAV = remaining duration to keep quiet

NAV = 10
IEEE 802.11

CTS = Clear-to-Send
IEEE 802.11

CTS = Clear-to-Send

NAV = 8
DATA packet follows CTS. Successful data reception acknowledged using ACK.
IEEE 802.11

Reserved area
Binary Exponential Backoff in DCF

- When a node fails to receive CTS in response to its RTS, it increases the contention window:
 - CW is doubled (up to an upper bound)
 - More collisions \Rightarrow longer waiting time to reduce collision

- When a node successfully completes a data transfer, it restores CW to CW_{min}
802.11 Backoffs

- **SIFS (Short Inter Frame Spacing)**
 - highest priority, for ACK, CTS, polling response

- **PIFS (PCF IFS)**
 - medium priority, for time-bounded service using PCF

- **DIFS (DCF, Distributed Coordination Function IFS)**
 - lowest priority, for asynchronous data service

medium busy

direct access if medium is free ≥ DIFS

next frame

contention

DIFS

DIFS

PIFS

SIFS
DCF Example

B1 = 25
B2 = 20

B1 = 5
B2 = 15

B2 = 10

B1 and B2 are backoff intervals at nodes 1 and 2

cw = 31
Fragmentation

sender

DIFS RTS

SIFS CTS SIFS

frag1

SIFS ACK1 SIFS

frag2

SIFS ACK2

receiver

other stations

NAV (RTS)

NAV (CTS)

NAV (frag1)

NAV (ACK1)

DIFS

data

contention

t
802.11 - MAC management

- Association/Reassociation
 - integration into a LAN
 - roaming, i.e. change networks by changing access points
 - scanning, i.e. active search for a network

- Power management
 - sleep-mode without missing a message
 - periodic sleep, frame buffering, traffic measurements
Scanning

- **Goal:** Find a network to connect
- **Passive scanning**
 - Not require transmission
 - Move to each channel, and listen for Beacon frames
- **Active scanning**
 - Require transmission
 - Move to each channel, and send Probe Request frames to solicit Probe Responses from a network
Association in 802.11

1: Association request
2: Association response
3: Data traffic
Reassociation in 802.11

1: Reassociation request
3: Reassociation response
5: Send buffered frames
6: Data traffic

Old AP
4: send buffered frames

New AP
2: verify previous association

Client
802.11 - Roaming

- No or bad connection? Then perform:
 - Scanning
 - scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
 - Reassociation Request
 - station sends a request to one or several AP(s)
 - Reassociation Response
 - success: AP has answered, station can now participate
 - failure: continue scanning
 - AP accepts Reassociation Request
 - signal the new station to the distribution system
 - the distribution system updates its data base (i.e., location information)
 - typically, the distribution system now informs the old AP so it can release resources
Power management

- Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- Timing Synchronization Function (TSF)
 - stations wake up at the same time
- Infrastructure
 - Traffic Indication Map (TIM)
 » list of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 » list of broadcast/multicast receivers transmitted by AP
802.11 PSM

The image illustrates the TIM (Traffic Indication Map) and DTIM (Decentralized TIM) intervals. The access point is busy during the TIM interval, and the medium is busy during the DTIM interval.

- **TIM interval**: The access point is busy, and the medium is busy.
- **DTIM interval**: The access point is busy, and the medium is busy.

The station is awake during the DTIM interval and engages in data transmission to/from the station.

- **TIM**: Transmission
- **DTIM**: Decentralized Transmission
- **B**: Broadcast/multicast
- **PS poll**: Poll
- **d**: Data transmission to/from the station