
 This demonstration introduces an operational prototype
of a novel platform for Internet measurements. Our system,
called DipZoom (for “Deep Internet Performance
Zoom-in”), attempts to make high-quality network meas-
urements available and accessible to broad technical com-
munity, and to facilitate the inclusion of complex network
measurement experiments into undergraduate curriculum.
DipZoom is based on two key ideas. First, recognizing the
difficulty any single provider would face in building a plat-
form representative of the scale and diversity of the Internet,
DipZoom implements a matchmaking service instead to
bring together experimenters in need of measurements with
external measurement providers in a peer-to-peer manner.
Thus, DipZoom leverages experimenters themselves in de-
ploying a large number and variety of measuring points.
Second, DipZoom provides a coherent view over the entire
network of measurement providers, which is accessible and
controllable from a participant’s local machine. Using
DipZoom API, complex multi-step measurements involving
potentially globally distributed measuring points, could be
implemented and executed merely as a local Java application.
 The DipZoom platform consists of measuring points
(MPs), clients, and the core that implements matchmaking.
In the peer-to-peer spirit, measurement requester software is
bundled with measurement provider, so in order to request
measurements from a computer, one must be willing to also
provide measurements from this computer to others.
Measurement points, however, can exist by themselves to
allow their deployment on servers and other devices without
direct access to end-users. The client part includes a Dip-
Zoom client library, which implements the DipZoom API,
and a graphical front-end, which provides an exploratory
access to the system and serves as an example application
built on top of the API.
 The DipZoom prototype has been operational since
January and typically has between 100-150 online MPs. It
currently supports ping, traceroute, wget, nslookup, dig,
host, and curl measurements (although not every MP sup-
ports every measurement). Peer software is publicly
available from [1], and our initial experiences are reported
in [2].
 Our demo will illustrate the DipZoom capabilities by
performing the following tasks on a live system: we will
demonstrate the ease of deploying new measuring points by
downloading and installing DipZoom peer software on a
laptop or other Java-capable device of volunteer delegates;

we will demonstrate the exploratory access to the totality of
the on-line MPs from the graphical front-end; and we will
demonstrate how DipZoom lowers the barrier of entry for
performing complex measurement experiments by executing
a sample experiment live from our laptop.
 The DipZoom graphical client (Figure 1) has an area
where user can specify the filters for the MPs that suit his or
her requirements, an area where he or she can describe the
measurement request, and an area that displays the list of
currently on-line MPs satisfying the filters. The typical
user actions include specifying the filters in the top area,
clicking the “Get MP List” button to retrieve the online MPs
in the middle area, and then selecting the MPs to be used,
specifying the measurement details in the bottom area and
submitting the request by clicking the “Send Request” but-
ton. Upon retrieving and analyzing the results, the user
typically iterates through the above sequence of action,
zooming in specific MP sets and measurement types.
 To illustrate the use of DipZoom API, we will present
and execute live an application that investigates the quality
of Akamai server selection [3] (Figure 2). The application
represents a multi-step distributed experiment involving (1)
discovering several Akamai edge servers using a DNS
lookup from two MPs belonging to two different regions
and (2) comparing the performance of the download of the
same object from one of the MPs using all the discovered
edge servers. The code shows how to complete this com-
plex study as a locally executed Java application. The ap-
plication accepts as the arguments the two regions to be
investigated and returns the performance of the best and
Akamai-selected edge server for an MP from the first region.
While this code uses only two MPs for compactness, it is
trivial to extend the code to a larger MP set.

References
[1] http://dipzoom.case.edu
[2] Zh. Wen, S.Triukose, and M. Rabinovich. Facilitating
Focused Internet Measurements. To appear in Sigmet-
rics’2007. A preliminary draft is available at
http://dipzoom.case.edu/files/documents/dipzoom_focus.pdf
[3] http://www.akamai.com/

Sipat Triukose, Zhihua Wen, Adam Derewecki, and Michael Rabinovich
Electrical Engineering and Computer Science Department

Case Western Reserve University
Cleveland, OH 44106

{sipat.triukose,zhihua.wen,adam.derewecki,michael.rabinovich}@case.edu

DipZoom: an Open Ecosystem for Network Measurements

http://dipzoom.case.edu/
http://dipzoom.case.edu/files/documents/dipzoom_focus.pdf
http://www.akamai.com/

package edu.cwru.netw.dipzoom;
import java.util.*;
public class Demo {

public static void main(String[] args) {
 DipzoomClientLibrary dcl = new DipzoomClientLibrary();
 if (dcl.login("login.xml") != 1) return;
 // Take two regions parameter from command-line
 String region1 = args[0]; String region2 = args[1];
 Hashtable<String, String> mpParameters = new
 Hashtable<String,String>();

 // Get a list of measuring points from each region supports.
 // both nslookup and wget
 mpParameters.put("region", region1); // start with region1
 mpParameters.put("measurementType", Constants.NSLOOKUP);
 ArrayList<MeasuringPoint> mpRegion1 =
 dcl.getMeasuringPointList(mpParameters);
 mpParameters.put("measurementType", Constants.WGET);
 ArrayList<MeasuringPoint> mpRegion1Wget =
 dcl.getMeasuringPointList(mpParameters);
 mpRegion1.retainAll(mpRegion1Wget); // intersect two lists of MP
 mpParameters.put("region", region2); // change the region to region2
 ArrayList<MeasuringPoint> mpRegion2Wget =
 dcl.getMeasuringPointList(mpParameters);
 mpParameters.put("measurementType", Constants.NSLOOKUP);
 ArrayList<MeasuringPoint> mpRegion2 =
 dcl.getMeasuringPointList(mpParameters);
 mpRegion2.retainAll(mpRegion2Wget); // Intersect two lists of MP
 // Consturct a list containing a measuring point from each region
 ArrayList<MeasuringPoint> measuringPoints = new ArrayList(
 Arrays.asList(new MeasuringPoint[]
 {mpRegion1.get(0),mpRegion2.get(0)}));

 // Obtain IP addresses of CDN-selected servers for both measuring points.
 MeasurementRequest nsLookupRequest = new MeasurementRequest();
 Hashtable<String,String> parameters = new Hashtable<String,String>();
 parameters.put("target", "firm-x.com");
 parameters.put("type", Constants.NSLOOKUP);
 nsLookupRequest.setParameters(parameters);
 ArrayList<MeasurementResult> pendingResults =
 dcl.sendRequest(nsLookupRequest, measuringPoints);
 ArrayList<NsLookupResult> finishedResults = new
 ArrayList<NsLookupResult>();
while (pendingResults.size() > 0) // wait for the results
 for (int i = 0; i < pendingResults.size(); i++)
 if (pendingResults.get(i).getTransactionStatus() ==
 Constants.RESULT_RECEIVED) {
 finishedResults.add((NsLookupResult)pendingResults.get(i));

 pendingResults.remove(i);
 }

 // Compare the performance provided by the discovered CDN
 // servers to one of the measuring points.
 // Select the measuring point
 MeasuringPoint measuringPoint = measuringPoints.get(0);
 String cdnSelectedServerIP = "";
 ArrayList<MeasurementRequest> wgetRequests = new
 ArrayList<MeasurementRequest>();
 for (NsLookupResult nsLookupResult : finishedResults) {
 parameters = new Hashtable<String,String>();
 parameters.put("type", Constants.WGET);
 parameters.put(“parameter”, “--header Host:images.pcworld.com”);
 parameters.put("target",nslookupResult.getIPAddr()+
 "/images/header/logo_hd.jpg");
 MeasurementRequest wgetRequest = new MeasurementRequest();
 wgetRequest.setParameters(parameters);
 wgetRequests.add(wgetRequest);
 // Find the CDN-selected server for the measuring point
 if (nsLookupResult.getMeasuringPointID() == measuringPoint.getID())
 cdnSelectedServerIP = nsLookupResult.getIPAddr();
 }
 // Send wget requests for all CDN servers to the selected measuring point
 ArrayList<MeasurementResult> pendingWgetResults=
 dcl.sendRequest(wgetRequests,measuringPoint);
 ArrayList<WgetResult> wgetResults = new ArrayList<WgetResult>();
 while (pendingWgetResults.size() > 0) // wait for all the results
 for (int i = 0; i < pendingWgetResults.size(); i++)
 if (pendingWgetResults.get(i).getTransactionStatus()==
 Constants.RESULT_RECEIVED) {
 finishedWgetResults.add((WgetResult)pendingWgetResults.get(i));
 pendingWgetResults.remove(i);
 }

 // findFastestServer and findCDNSelectedServer are user-defined functions,
 // They are not part of DipZoom API.
 WgetResult fastestServer = findFastestServer(wgetResults);
 System.out.printf("The fastest server to reach firm-x.com is %s with a time of
 %s.", fastestServer.getIp(), fastestServer.getCompletionTime());
 WgetResult cdnSelectedServer=
 findCDNSelectedServer(wgetResults,cdnSelectedServerIP);
 System.out.printf("The CDN server to reach firm-x.com is %s with a time of
 %s.", cdnSelectedServerIP.getIp(),
cdnSelectedServerIP.getCompletionTime());
 }
}

Figure 2: Demo application using DipZoom API

R
et

ur
ne

d
an

d
se

le
ct

ed
 M

Ps

⎧
⎪⎪
⎨
⎪
⎪⎩

⎫
⎬
⎭

Filter panel

⎫
⎬
⎭

R
equest panel Figure 1: DipZoom client GUI library

	page1.doc
	page2.doc

