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ABSTRACT

We present NANO, a system that identifies performance
degradations that result from network neutrality violation
by an Internet service provider (ISP), such as, differential
treatment of specific classes of applications, users, or des-
tinations by the ISP. Existing systems for detecting differ-
ential treatment are typically specific to an application or
to a particular differentiation mechanism. Because ISPs
can change differentiation policies and mechanisms, users
need a method to detect differentiation, regardless of the
applications that might be subject to differentiation and to
the mechanisms used to achieve it. Such a scheme would
make detection both robust and difficult to evade. To distin-
guish differentiation from other causes of degradation (e.g.,
overload, misconfiguration, failure), NANO uses a statistical
method to establish causal relationship between an ISP and
observed service performance. NANO agents deployed at
participating clients across the Internet collect performance
data for selected services and report this information to cen-
tralized servers, which analyze the measurements to estab-
lish causal relationships between an ISP’s policy and per-
formance degradations. We have implemented NANO and
deployed clients in a controlled environment on Emulab.
We run a combination of controlled (Emulab) and wide-area
(PlanetLab) experiments to demonstrate NANO’s ability to
determine the extent and criteria for differentiation, for a
range of current and potential ISP policies on both BitTor-
rent and HTTP traffic.

1. Introduction

An intense debate has been raging over network neutral-
ity, which states that end users must control the content and
applications that they use on the Internet, and that the ISPs
remain neutral how they forward traffic, irrespective of con-
tent, application, or sender [9]. We do not take a stance
in this debate; rather, our goal is to make Internet service
providers policies more transparent to end users. We de-
fine any practice by the ISP that degrades performance or
connectivity for a service as discrimination or violation of
network neutrality. We aim to help users in access networks
detect such practices.

Because ISP discrimination can take many forms, de-
tecting it is often difficult. ISPs have been interfering
with TCP connections for BitTorrent and other peer-to-
peer applications [7]; most recently, Cox Communications
said that it planned to begin throttling peer-to-peer traf-
fic [1]. Other types of discrimination include blocking spe-
cific ports, throttling bandwidth, or shaping traffic for spe-

cific services, or enforcing traffic quotas. Existing detection
mechanisms actively probe ISPs to test for specific cases of
discrimination: Glasnost detects spurious TCP reset packets
of BitTorrent connections [7, 10], Beverly et al. present a
study of port-blocking [21], and NVLens detects the use of
packet-forwarding prioritization by ISPs by examining the
type-of-service bits in ICMP time exceeded messages [29].
These tools have several drawbacks. First, they are spe-
cific to either the application (e.g., BitTorrent) or the mech-
anism that the ISP is using to discriminate (e.g., resetting
TCP connections). Second, they rely primarily on active
probes, which are typically detectable, making it possible
for an ISP to either block or prioritize them, thus rendering
the detection tools useless. Detecting general performance
degradations caused by an ISP ultimately requires a method
that does not make assumptions about the type or method
of discrimination and that relies primarily on observations
of in situ network traffic (as opposed to exogenous, active
probes). This paper presents such a method.

This paper presents the design, implementation, and eval-
uation of Network Access Neutrality Observatory (NANO),
a system that infers the extent to which an ISP’s policy
causes performance degradations for a particular service.
Realizing NANO is challenging because ISP discrimination
can take many forms in practice. First, ISPs can discrim-
inate against different types of applications, ranging from
BitTorrent to YouTube to Skype. Second, an ISP can ap-
ply different discrimination policies (e.g., certain users may
receive a different class of service). Third, an ISP can ap-
ply different mechanisms to implement the discrimination
policy, ranging from outright blocking of traffic to applying
different scheduling priorities to different classes of traffic.

To address the diversity and continually changing nature
of discrimination, NANO uses a statistical “black-box” ap-
proach: In contrast to existing methods, we make no as-
sumptions about the mechanisms for implementing discrim-
ination. Instead, we use statistical analysis primarily based
on in situ service performance data to quantify the causal
relationship between an ISP’s policy and the observed ser-
vice degradation. Establishing such a causal relationship
is challenging because many confounding factors (or vari-
ables) that are unrelated to ISP discrimination can also af-
fect the performance of a particular service or application.
For example, a service may be slow (e.g., due to overload at
a particular time-of-the-day). A service might be poorly lo-
cated relative to the customers of the ISP. Similarly, a service
may be fundamentally unsuitable for a particular network
(e.g., Internet connectivity is not suitable for VoIP applica-
tions in many parts of the world).



NANO relies on participating end-system clients that col-
lect and report service performance measurements for a ser-
vice. Our goal is to make the practices of Internet service
providers transparent to end users, regardless of the type of
discrimination that an ISP may apply. We aim to detect dis-
crimination by observing the effect on service performance
using primarily passive, in-band methods. In this case, the
detection mechanism will be more robust because, unlike ac-
tive measurements, ISPs cannot prioritize, block, or other-
wise modify in-band measurements. The challenge is figur-
ing out how to gather the right set of measurements to allow
users to detect discrimination, and, in particular, to disam-
biguate discrimination from other factors that might degrade
performance. To help isolate the effects of an ISP’s policies
from other factors, we gather data from a large number of
clients in such a way that helps isolate the effects of each
of the confounding variables. We organize the gathered data
around strata, so that, for each combination of confounding
variables (and appropriate ranges), we can isolate the effects
of the client’s upstream ISP on observed performance. As
NANO makes no assumption about the type of discrimina-
tion mechanism, our system is the first “future proof” system
for determining whether an ISP is actively causing perfor-
mance degradation.

A necessary condition for demonstrating a causal relation-
ship between an ISP and discrimination is to show that when
all the other factors are equal, a service performs poorly
when accessed from an ISP compared to another ISP. We
draw inspiration from statistical epidemiology: Just as epi-
demiologists seek to determine whether a particular drug
might be responsible for the improved health of a patient,
we seek to determine whether a particular ISP is the cause
of performance degradation. The challenge in establishing
causality is that many confounding factors may be the un-
derlying responsible cause for the observed outcome. For
example, users may experience degraded performance due
to the choice of application, operating system, or computer.
Our system must isolate these confounding factors to deter-
mine when an ISP causing the performance degradation.

The main challenge in designing NANO is to create an en-
vironment where all other factors are in fact equal. Creating
such an environment requires (1) enumerating the confound-
ing factors; (2) establishing a “baseline” level of perfor-
mance where all factors besides the confounding variables
are equal. The nature of many confounding factors makes it
difficult to create an environment on the real Internet where
all other factors, except for an ISP’s discriminative policy
and service, would be equal. Instead, to correctly infer the
causal relationship, we adjust for the confounding factor by
creating strata of clients that have similar values for all fac-
tors except for their access network. Our approach is based
on the theory of causal inference, which is applied exten-
sively in other fields, including epidemiology, economics,
and sociology.

We have implemented NANO and conducted experiments
with a working prototype. We emulate access network ISPs
on Emulab, whose clients access HTTP and BitTorrent ser-
vice from hundreds of PlanetLab nodes on the wide-area
Internet. Some of the ISPs in our experimental setup dis-
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Figure 1: Problem Overview.

criminate while others remain neutral. Specifically, we have
conducted three experiments with different discrimination
criteria and mechanisms, and confounding variables. We
demonstrate that the distribution of performance from the
discriminating ISPs may look very similar to the distribu-
tion of performance from the neutral ISPs due to the con-
founding variables. We then show that using NANO we can
correctly identify the ISPs that are discriminating, estimate
the total causal effect on the performance of the services and
also infer the discrimination criteria that the ISP is using.

Section 2 presents a problem overview and motivates the
use of black-box statistical methods for detecting network
neutrality violations. Section 3 offers a primer on causal
inference and explains confounding variables can make the
cause of performance degradation ambiguous. Section 4 de-
scribes the architecture of NANO and Section 5 presents
some implementation details. Section 6 describes the ratio-
nale for our experiments and evaluates the accuracy, sensi-
tivity, and scalability of NANO. Section 7 lists various open
issues with NANO. Section 8 discusses related work, and
Section 9 concludes.

2. Problem Overview and Motivation

In this section, we describe an overview of the network
neutrality violation problem. We also define the key terms.

Problem statement. Our goal is to detect whether a certain
practice of an ISP (intentional or accidental) results in de-
graded performance for a service compared to other similar
services or performance for the same service through other
ISPs. If an ISP’s policy of treating traffic differently does
not result in degradation of performance, we do not consider
it discrimination. We define some of these terms in the next
paragraph.

Definitions. A service is the “atomic unit” of discrimina-
tion. An ISP may discriminate against traffic for a particular
service, e.g., Web search, traffic for a particular domain, or
particular type of media, such as video. Such traffic may be
identifiable using the URL or the protocol. Similarly, ISPs
may target specific applications, e.g., VoIP, or peer-to-peer
file transfers. Performance, the outcome variable, is specific
to the service. For example, we use server response time for
HTTP requests, loss, and jitter for VoIP traffic, and average
throughput for peer-to-peer traffic. Discrimination against a
service is a function of ISP policy. The performance for a
service depends on both the properties of the ISP’s network,



e.g., its location, as well as the policy of treating the traffic
differently. Thus, an objective evaluation of ISP discrimi-
nation must adjust for the ISP’s network as a confounding
factor. To differentiate an ISP’s network from its discrimi-
nation policy, we use the ISP brand or name as the causal
variable referring to the ISP’s discrimination policy. In the
rest of the paper, when we use ISP as the cause, we are re-
ferring to the ISP policy or the brand with which the policy
is associated.

Why it’s difficult. Detecting discrimination is challenging
for several reasons. First, edges do not know what policies or
mechanisms an ISP might be implementing to discriminate
against traffic. Detecting ISP discrimination is a cat-and-
mouse game between discriminating ISPs and the edges (i.e.,
end-hosts and content providers). End users access content
(e.g., video, audio content) or use a particular service (e.g.,
p2p file sharing, VoIP) via their ISPs, as shown in Figure 1.
A discriminating ISP could intentionally reduce the perfor-
mance of a certain service or throttle connectivity to a partic-
ular content in a wide variety of ways, many of which might
be difficult for users to detect. Existing tools for detecting
network neutrality all assume that either the mechanism for
discriminating against traffic or the application being dis-
criminated against is known in advance. Unfortunately, this
is generally not the case; users from a wide range of ISPs and
countries often do not even know whether an ISP might be
discriminating certain subsets of traffic. Instead, these users
need general methods for detecting discrimination that do
not rely on testing for specific discrimination types.

Second, any tool that detects discrimination must posi-
tively identify the ISP—as opposed to any other possible
factor—as the underlying cause of discrimination. This
problem was most recently identified by an unnamed in-
dustry source, who expressed skepticism about the effec-
tiveness of existing tools: “However, one ISP industry
source, who asked not to be identified, questioned whether
the tools would accurately point to the cause of broadband
problems. ‘Spyware or malware on computers can affect
browser performance, and problems with the wider Internet
can cause slowdowns, the source said.”” [12] It is precisely
this problem—adjusting for such external causes and con-
founding factors—that we seek to solve in the design of a
tool for detecting network neutrality violations.

Also, implicit in our discussion so far has been the as-
sumption that we know what the non-discriminated service
performance is for a given ISP. However, it is not really clear
how to determine what is the non-discriminated performance
for a given service. We follow one approach for estimating
this value and allude to other possible ways of approximat-
ing the non-discriminated service performance (or baseline
performance) in Section 4.1.2.

NANO appears to be the first tool that can isolate such dis-
crimination from other confounding factors, without a priori
knowledge of an ISP’s discrimination policy. At the heart of
our approach is “black box” statistical testing. Unlike exist-
ing approaches to detecting discrimination, our approach is
statistical, not rule-based. As opposed to trying to identify
or detect certain behavior, we instead directly observe the

performance of traffic and try fo infer the causes of degraded
performance when it does occur. This approach is more gen-
eral; however, it also faces its own set of challenges, such as
ensuring that all possible causes are enumerated, collecting a
statistically significant set of data for analysis, etc. The next
section offers a primer on causal inference and explains how
it might be applied to network performance.

3. Background and Problem Formulation

In this section!, and basic concepts used we give a brief
overview of causal inference, how it relates to association
and correlation and approaches for quantifying causal effect.
We also formalize the application of causality to detecting
ISP discrimination. One of the big problems with causal
inference is ensuring that all possible causes are enumerated;
thus, we also explain how we test for that our model captures
a sufficient set of confounding variables.

3.1 Background for Causal Inference

Statistical methods offer tools for causal inference that
have been used in observational and experimental stud-
ies [13,19]. NANO draws heavily on these techniques. In
this section, we review basic concepts and approaches for
causal inference, and how they relate to inferring ISP dis-
crimination. We begin with a graphical representation of
causality and an example that shows correlation and con-
founding variables.

Graphical Representation and Example. We can express
causal relationships between various variables and system
performance using a graphical model. We represent the vari-
ables as nodes in a graph. An edge in this graph is directed if
we can establish the direction of causality between the two
nodes (if x causes y, then there is an edge from node z to
node y), and undirected if we observe correlation but can-
not determine the direction of causation (please see [24] for
an algorithm for determining the causal structure). In this
graph, a variable z is confounding for the relationship be-
tween the causal variable (z) and outcome variable (y) if
there are paths from z to both x and y that do not go through
either z or y.

To illustrate this, consider Figure 2 which shows a sim-
plified causal model for a hypothetical service. The service
performance depends on the application that the client uses
and the network round-trip time. The client application has
a correlation with the brand of the ISP, but we are not able
to determine the direction of causality. Perhaps the corre-
lation exists because the ISP advises its customers to use a
particular application, or perhaps it is the other way around:
that the clients using a particular application prefer a par-
ticular ISP. Similarly, we observe a correlation between the
client location and the brand of the ISP, but we are not able to
determine the direction of causal influence. The round-trip
time is determined by the relative location of the client and
the server. The server location is determined by the service
provider and the brand of the ISP (such dependencies are
common in content distribution networks). In this model,

IParts of the background from this section are adapted from material that
appeared in a workshop paper [23].
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Figure 2: Graphical model for service performance. Causal vari-
able (“ISP”’) and outcome variable (“Service Performance’) are shown
shaded. Confounding variables are shown in rectangular nodes.

client location and the client applications become confound-
ing variables because these variables have potential paths to
both the causal variable (ISP) and the outcome variable (ser-
vice performance). We describe these concepts more for-
mally in the following.

Causal Effect. The statement “X causes Y” means that if
there is a change in the value of variable X, then we expect a
change in value of variable Y. We refer to X as the treatment
variable and Y as the outcome variable.

In the context of this paper, accessing a particular service
through an ISP is our treatment variable (X), and the ob-
served performance of a service (Y') is our outcome variable.
Thus, treatment is a binary variable; X € {0,1}, X =1
when we access the service through the ISP, and X = 0
when we do not (e.g., access the service through an alterna-
tive ISP). The value of outcome variable Y depends on the
performance metric and the service for which we are mea-
suring the performance.

The goal of causal inference is to estimate the effect of
the treatment variable (the ISP) on the outcome variable (the
service performance). Let’s define a ground-truth value for
the outcome random variable as GG x, so that G; is the out-
come value for a client when X = 1, and G is the outcome
value when X = 0. We will refer to the outcome when not
using the ISP (X = 0) as the baseline—we can define base-
line in a number of ways, as we describe in more detail in
Section 4.1.2.

We can quantify the average causal effect of using an ISP
as the expected difference in the ground truth of service per-
formance between using the ISP and the baseline.

6 = E(G1) — E(Gy) (1)

Note that to compute the causal effect, f, we must observe
values of the outcome both under the treatment and without
the treatment.

Association vs. Causal Effect. In a typical in situ dataset,
each sample presents only the value of the outcome variable

either under the treatment, or under the lack of the treatment,
but not both; e.g., a dataset about users accessing a particular
service through one of the two possible ISPs, ISP, and ISPy,
will comprise data of the form where, for each client, we
have performance data for either ISP, or ISP}, but not both.
Such a dataset may thus be incomplete and therefore not suf-
ficient to compute the causal effect, as shown in Equation 1.

Instead, we can use such a dataset to compute correlation
or association. Let’s define association as simply the mea-
sure of observed effect on the outcome variable:

a=E(Y|X =1)-EY|X =0) 2)

It is well known that association is not a sufficient metric for
causal effect, and in general o # 6.

3.2 Approaches for Estimating Causal Effect

This section presents two techniques for estimating the
causal effect, 6. The first, random treatment, involves an ac-
tive experiment, where we randomly assign the treatment to
the clients and observe the association. The second, adjust-
ing for confounding variables, is a passive technique, where
we work with only an in situ dataset and estimate the overall
causal effect by aggregating the causal effect across several
small strata.

3.2.1 Random Treatment

Because the ground-truth values (G, G1) are not simul-
taneously observable, we cannot estimate the true causal ef-
fect (Eq. 1) from an in situ dataset alone. Fortunately, if
we assign the clients to the treatment in a way that is in-
dependent of the outcome, then under certain conditions,
association is an unbiased estimator of causal effect. This
property holds because when X is independent of G x, then
E(Gx) = E(Gx|X) = E(Y|X); see [25, pp. 254-255] for
a proof.

For association to converge to causal effect with random
treatment, all other variables in the system that have a causal
association with the outcome variable must remain the same
as we change the treatment. In the case of the example
above, association will converge to true causal effect under
random treatment, if and only if the original ISP and the al-
ternative ISP are both similar except for their discrimination
policy.

Random treatment is difficult to emulate in the Internet for
two reasons. First, it is difficult to make users switch to an
arbitrary ISP, because not all ISPs may offer services in all
geographical areas, the users may be contractually bound to
a particular ISP, and asking users to switch ISPs is incon-
venient for users. Second, if changing the ISP brand also
means that the users must access the content through a rad-
ically different network which could affect the service per-
formance, then we cannot use the mere difference of per-
formance seen from the two ISPs as indication of interfer-
ence: the association may not converge to causal effect un-
der these conditions because the independence condition is
not satisfied. This situation is called operational confound-
ing: changing the treatment inadvertently or unavoidably
changes a confounding variable.

3.2.2  Adjusting for Confounding Variables



Because it is difficult to emulate random treatment on the
real Internet and control operational confounding, we need
to find a way to adjust for the effects of confounding vari-
ables. NANO uses the well-known stratification technique
for this purpose [13].

Confounding variables are the extraneous variables in the
inference process that are correlated with both the treatment
and the outcome variables. As a result, if we simply ob-
serve the association between the treatment and the outcome
variables, we cannot infer causation or lack of it, because
we cannot be certain whether the change is due to change
in the treatment variable or a change in one or more of the
confounding variables.

With stratification, all samples in a stratum are similar in
terms of values for the confounding variables. As a result,
X and Gx are independent of the confounding variables
within the stratum, essentially creating conditions that re-
semble random treatment. Thus, the association value within
the stratum converges to causal effect, and we can use asso-
ciation as a metric of causal effect within a strata.

Challenges. This approach presents several challenges.
First, we must enumerate the confounding variables and col-
lect sufficient data to help disambiguate the true causal ef-
fect from the confounding effects. Second, we must define
the stratum boundaries in a way that satisfies the above con-
ditions. Unfortunately, there is no automated way to enu-
merate all the confounding variables for a given problem;
instead, we must rely on domain knowledge. Section 4 ad-
dresses these challenges.

Formulation. In the context of NANO, we have multiple
ISPs and services; we wish to calculate the causal effect 6; ;
that estimates how much the performance of a service 7, de-
noted by Y}, changes when it is accessed through ISP i, ver-
sus when it is not accessed through ISP 7. Let Z denote the
set of confounding variables, and s a stratum as described
above. The causal effect §; ; is formulated as:

0;(s;x) = EY;|X, =27 €B(s)) 3)
0;,5(s) 0:,5(s;1) = 0;(s;0) “)
0i.j > pii(s)0i5(s) Q)

B(s) represents the range of values of confounding variables
in the stratum s. 6; ;(s) represents the causal effect within
the stratum s and p; ;(s) refers to the probability of the ser-
vice j under stratum s with ISP 7. A key aspect is the term
0;,;(s;0) in Equation 4: it represents the baseline service
performance, or the service performance when the ISP is not
used; we define this concept in more detail in Section 4.1.2.
Note that the units for causal effect are same as for service
performance, so we can apply simple thresholds to detect
discrimination.

3.3 Sufficiency of Confounding Variables

Although there is no simple or automatic way to enumer-
ate all the confounding variables for a problem, we can test
whether a given list is sufficient in the realm of a given

dataset. To do so, we use the following heuristic. We predict
the value of the outcome variable using a non-parametric
regression function, f(), of the treatment variable, X, and
the confounding variables, Z, as § = f(X;Z). We then
compare the predicted value with the value of outcome vari-
able observed in the given dataset, y, using relative error,
ly = 9l/y.

If X and Z are sufficient to define an unbiased predic-
tor for the outcome Y, then the prediction error should be
small, with an expected value of zero, and statistically inde-
pendent of the outcome variable. Recall that the confound-
ing variables correlate with both the causal and the outcome
variable, therefore the distribution of the unobserved con-
founding variable should vary over the range of the outcome
variable. Prediction error with an estimator that does not
account for this unobserved confounding variable, may not
be independent of the outcome variable. We can test the
independence between prediction error and outcome using
a simple correlation test. We demonstrate this heuristic in
Section 6.3.1.

4. Applying Causality to Network Traffic

This section explains how NANO performs causal infer-
ence, enumerates the confounding variables required for this
inference, and describes the system architecture for collect-
ing and processing the relevant data.

4.1 Establishing Causal Effect

Estimating causal effect for a service degradation involves
three steps. First, we must stratify the service performance
data reported from the end-hosts to create a number of strata.
Next, we estimate the extent of possible ISP effect within
each stratum and across the board. Finally, we try to infer
the criteria that the ISP is using for discrimination. The re-
mainder of this section describes these three steps.

4.1.1  Stratifying the data

To stratify the data, NANO creates bins (i.e., ranges of val-
ues) along the dimensions of each of the confounding vari-
ables, such that the value of the confounding variable within
the bin is (almost) constant. The bin size depends on the
nature of the confounding variable. As a general rule, we
create strata such that there is a bin for every unique value of
categorical variables; for the continuous variables, the bins
are sufficiently small, that the variable can be assumed to
have essentially a constant value within the stratum. For
example, for a confounding variable representing the client
browser, all the clients using a particular version and make
of the browser are in one stratum. Similarly, we create one
hour strata along the time-of-the-day variable.

We use simple correlation to test whether the treatment
variable and the outcome variable are independent of the
confounding variable within a stratum. We combine adja-
cent strata if the distribution of the outcome variable condi-
tioned on the treatment variable is identical in each of the
stratum; this reduces the total number of strata and the num-
ber of samples needed.

4.1.2  Establishing the baseline and causality



One challenge with respect to Equation 4 is the term
0;,;(s;0), which represents the baseline service perfor-
mance, or the service performance when the ISP is not
used. This aspect presents a serious challenge: What does
it mean to not use ISP ¢ to access service j? In other words,
what is the “baseline” performance that a user could ex-
pect when using a particular service? For example, “not us-
ing” an ISP might mean using another ISP, k, but if ISP &
is also discriminating against service j, then 6y, ;(s; 1) will
not have the (neutral) ground-truth baseline value. To ad-
dress this problem, NANO takes 6; ;(s;0) as the average
service performance when not using ISP i, calculated as:
> ki Ok, (831)/(ns — 1), where ng > 2 is the number of
ISPs for which we have clients in stratum s.

An important implication of defining the baseline in this
way is that NANO is essentially comparing the performance
of a service through a particular ISP against the average
performance achieved through other ISPs, while adjusting
for the confounding effects. If all or most of the ISPs
across which NANO obtains measurements are discriminat-
ing against a service, it is not possible to detect such dis-
crimination using this definition; in this case, discrimination
becomes the norm. In such cases, we might consider using
other definitions of discrimination, such as the comparing
against the best performance instead of the average, or using
a performance model of the service obtained from laboratory
experiments or mathematical analysis as the baseline.

Another issue with our definition is that it only mea-
sures discrimination based on deviation from average per-
formance; this definition is simple, but it may be subject to
manipulation, whereby an ISP can manipulate the perfor-
mance of individual flows without affecting the average. We
discuss possible defenses against this type of manipulation
in Section 7.

4.1.3 Inferring the discrimination criteria

NANO infers the discrimination criteria that an ISP uses
by using simple decision-tree based classification methods.
For each stratum and service where NANO detects discrimi-
nation, NANO assigns a negative label, and for each stratum
and service where it does not detect discrimination, it assigns
a positive label. NANO then uses the values of the confound-
ing variables and the service identifier as the feature set and
uses the discrimination label as the target variable, and uses
a decision-tree algorithm to train the classifier.

The rules that the decision tree generates indicate the dis-
crimination criteria that the ISP uses, because the rules in-
dicate the boundaries of maximum information distance be-
tween discrimination and the lack of it. We note that the
causal inference performed by NANO makes no assump-
tions about discrimination criteria used by the ISP; the de-
termination of the actual sources of discrimination comes as
almost as a side effect of stratification, after the fact.

4.2 Enumerating the Confounding Variables

Confounding variables are the extraneous factors in in-
ferring whether an ISP’s policy is discriminating against a
service; these variables correlate, either positively or neg-

atively, with both the ISP brands and service performance.
Because there is no automated way to enumerate these vari-
ables for particular problem, we must rely on domain knowl-
edge. In this section, we describe three categories of con-
founding variables and explain how they correlate with both
the ISP brands and the service performance. In Section 5,
we describe the specific variables that we collect to adjust
for these confounding variables.

Client-based. Client-side applications, as well as system
and network setup, can confound the inference. The particu-
lar application that a client uses for accessing a service might
affect the performance. For example, in the case of HTTP
services, certain Web sites may be optimized for a particu-
lar Web browser and perform poorly for others. Similarly,
certain Web browsers may be inherently different; for exam-
ple, at the time of this writing, Opera, Firefox, and Internet
Explorer use different number of simultaneous TCP connec-
tions, and only Opera uses HTTP pipelining by default. For
peer-to-peer traffic, various client software may experience
different performance. Similarly, the operating system and
the configuration of the client’s computer and local network,
as well as a client’s service contract, can affect the perfor-
mance that the client perceives for a service.

We believe that the above variables also correlate with ISP
brand, primarily because the ISP may serve particular com-
munities or localities. As an example, we expect that Mi-
crosoft’s Windows operating system may be more popular
among home users, while Unix variants may be more com-
mon in academic environments. Similarly, certain browsers
may be more popular among certain demographics and lo-
calities than other.

Network-based. Various properties of the Internet path,
such as location of the client or the ISP relative to the lo-
cation of the servers on the Internet, can cause performance
degradation for a service; such degradation is not discrim-
ination. Similarly, a path segment to a particular service
provider might not be sufficiently provisioned, which could
degrade service. If we wish to not treat these effects as dis-
crimination, we should adjust for the path properties.

Time-based. Service performance varies widely with time-
of-day due to changes in utilization. Further, the utilization
may affect both the ISPs and the service providers, thus con-
founding the inference.

5. Design and Implementation

This section describes the implementation of NANO,
which has two parts: NANO-Agents reside on end hosts,
collect data (typically high-level or aggregated performance
statistics) for traffic from that host to various destina-
tions, and send aggregate traffic statistics to the centralized
NANO-Server. The NANO-Server collects these statistics
and performs the inference described in Section 3 to quan-
tify the ISP’s effect on performance. The primary source
of data for NANO are client-side agents installed on com-
puters of voluntarily participating clients (NANO-Agents).
Each agent continuously monitors and reports the data to
the NANO servers. The rest of this section describes these
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two components in detail. We also briefly describe our plans
to make the code for NANO-Agents availableto allow us to
reach a wide audience for gathering data and statistics across
a number of heterogeneous clients.

5.1 NANO-Agents

The most convenient place to collect network performance
data is using monitoring agents at clients. We have devel-
oped NANO-Agent as a packet-level sniffer that can access
find-grained information from the client machines including
the various system resource utilization and client machine
setup information.

Figure 5.1 shows the architecture for the NANO agent.
The NANO-Agent collects three types of features for the
confounding factors, corresponding to the three classes of
confounding variables (Section 4.2). First, the NANO-Agent
collects features that help identify the client setup, includ-
ing the operating system, basic system configuration and re-
source utilization on the client machine. Second, NANO-
Agents determine the topological location of the client and
their ISPs. Also, all the data collected is time-stamped to
allow adjustment for time-of-day factor. NANO-Agents col-
lect flow statistics and information about the application re-
sponsible for the flow to stratify the collected data on the
application or protocol type.

Data collection The criteria for data collection has two parts.
First, the feature should quantify the treatment variable, the
outcome variable, or the values of the confounding factors.
Second, the data should be unbiased. The first criterion helps
us determine a set of features for which to collect data; this
list is explained below. We can collect many of these features
through active or passive monitoring. The second criterion,
however, suggests that we must take care that the measure-
ments are not biased. As we discussed in Section 1, ISPs
may have the incentive to interfere with identifiable active
measurements to deter inference of discrimination or im-
prove their rankings. Similarly, we believe that while we
could use the data directly from service providers as the
“baseline” service performance, such information could be

biased in the favor of the service provider. Therefore, to the
extent possible, NANO relies on passive measurements to
determine the values of the features.

The NANO-Agent analyzes the network, transport and ap-
plication protocol (e.g., HTTP and RTP) headers to identify
the service and assess performance. For the experiments that
we describe in Section 6, we focus solely on features that can
be extracted from the TCP/IP headers of the packets and as-
sociated timing information. In particular, we try to estimate
the throughput and latency that the packets experience for
a TCP flow. To estimate the throughput agent continuously
measures the bytes uploaded and downloaded in a specified
(configurable interval). To estimate the latency on a TCP
flow, the agent measures the latency between the SYN and
SYN/ACK packets for the flows that originate at the client,
and the latency between the SYN/ACK and the first subse-
quent ACK, for the incoming connections that the client re-
ceives. In addition, the agent keeps track of connection du-
ration and events such as losses, timeouts (by tracking the
TCP duplicate acknowledgements) or unexpected connec-
tion terminations, such as, with a TCP reset flag. The agent
also infers the application associated with the active flows by
gleaning the information in the proc file system. In addi-
tion, the agent also continuously monitors the average CPU
and memory utilization on the client host.

In addition to runtime statistics, the agent also collects the
information about the client setup. This includes the client
host specification, i.e., the platform, CPU and memory spec-
ification, and the active operating system on the host. We
rely on the user to provide the agent with information that
we cannot infer dynamically. This includes the type of net-
work interface (wired or wireless), the type of contract the
client has with the ISP, the user’s location (city and country).
In the future, we plan to use an IP-Geo Location database in
lieu of client provided information.

Protecting user privacy To mitigate privacy concerns, the
agent performs local stratification to lower the granularity
of information that the client sends to the server. For this,
we mask the least significant 8 bits of the source and des-
tination IP addresses of the flows for which we report the
data2, round-off the round-trip time measurements to a (con-
figurable) nearby values. Because this stratification and im-
pact the inference accuracy at the server, we are extending
our implementation to allow these parameters to be updated
dynamically based on feedback from the server; for now, the
agent obtains the stratification parameters from local config-
uration.

Implementation We have implemented the agent using
C++. The agent promiscuously captures the packets that
flow from the client host’s network interface using the pcap
library. In order to address the privacy concerns, we allow
the users to specify a set of destinations for which the NANO
agents monitor performance. Based on this user-preference,
the agent filters the packets and analyzes the filtered packets
to estimate service performance.

2We disable this feature for the experiments described in Section 6 because
all of our testbed nodes shared the same subnet.
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NANO-Agent uses protocol buffers [11] to maintain the
information that it collects. Protocol buffers offer high speed
and compact serialization that allows us to minimize the
computational and communication overhead for running the
agent at the client. The agent periodically serializes the data
that it has collected and sends it to a NANO data collection
server. We discuss the overhead further in Section 6. At this
point, the NANO agents connect to the server an unsecure
channel, however, we are working on extending our imple-
mentation to use a secure channel to prevent eavesdropping
and ensure integrity, as well as to use a Mixing network,
such as TOR, to further obfuscate the client identity from
the NANO servers.

5.2 NANO-Server

Figure 4 shows the architecture of the NANO-Server,
which receives periodic information from NANO-Agents
running on the participating end-hosts. The server receives
the data from the client agents and stores it in a database.
The server simultaneously stratifies and indexes exes the
data using unique identifiers for each strata. This index-
ing allows for quick retrieval of data when needed. In our
present implementation, the stratification process is manu-
ally guided: we configure the server with the information
about strata boundaries for each feature. Our criteria is that
for features with discrete values, such as location, or applica-
tion identifier, we create a stratum per value. For continuous
variables, such as file size, we quantize the value into small
bins, and use the quantized value as a stratum.

The server periodically tries to predict the performance for
the services that it is tracking for each ISP using the method
described in Section 3.3 and computes the prediction error.
The NANO-Server uses kernel regression [27] with a radial
basis kernel in a piece-wise manner as a regression function.
The server uses the error distribution to asses whether it has
sufficient data and features to predict performance of a par-
ticular service. The server also uses Equation 5 to estimate
the extent of causal effect of each ISP for each service. The
number of strata that the server deals with can grow expo-
nentially with features. Fortunately, because the computa-
tion of effect within each stratum is independent of other
strata, the computation is easily parallelizable.

Implementation The server is implemented using a combi-
nation of C++ to implement the data collection and demar-
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Figure 5: Experimental setup on Emulab. Each ISP is represented as
an Emulab node with Click router running to perform discrimination.
NANO-agents are run on the client nodes and report information to
our server.

shalling and using a Python and MySQL backend for anal-
ysis and causal inference. Our present implementation can
compute causal effect over 20,000 tiles in about one minute
using two threads on a dual 3.2 GHz processor Intel Pentium
4 machine with 4 GB of memory. We realize that in a real-
world deployment, the number of strata can easily approach
a million; for this, we plan to port the NANO-server to a
Map-Reduce [5]-based implementation.

6. Evaluation

In this section, we present results from our evaluation of
NANO We present four main results:

e NANO can determine whether it has a sufficient set of
confounding variables; that is, NANO’s heuristic for
testing sufficiency of confounders has low relative er-
ror. (Section 6.3.1)

o NANO can detect when an ISP is discriminating. We
tested NANO’s detection algorithms with three dif-
ferent types of discrimination and in the presence of
various network and client-side confounding variables.
(Section 6.3.2)

e NANO can determine the discrimination criteria used
by the ISP with the help of a simple decision-tree based
classifier. (Section 6.3.3)

e NANO has low bandwidth overhead, in terms of
transferring summaries from the NANO-Agents to the
NANO-Server. (Section 6.3.4)

6.1 Experimental Setup

We use Emulab [26] to create a setup where we can control
some of the confounding variables on the client side and use
various discrimination criteria that might be implemented by
an ISP. We use PlanetLab [2] nodes to act as providers of
content (or seeds in the case of the BitTorrent setup), which
ensures that our experiments use real Internet paths. In the
rest of this section, we describe the three aspects of our
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setup: topology, implementing discrimination, and running
services.

6.1.1 Topology and testbed

We use Emulab to test the discrimination detection abili-
ties of NANO. We use Emulab to create a set of ISPs, each
with its set of clients that connect to the ISP using links of
configurable characteristics. The ISP provides connectivity
to the Internet to its clients. Figure 5, shows this arrange-
ment. We run the Click router software [15] on the routers
of the ISPs that perform traffic discrimination. The clients
can be configured to be of different physical configurations
and run different operating systems on them. In particular,
we create five ISPs: two of these discriminate, and we call
them discriminating ISPs, ISP D; and ISP Ds. The remain-
ing three ISPs use best-effort service for all the packets on
their routers; we refer to these as the neutral ISPs and ISP
N1, ISP Ny and ISP N3. The exact manner and nature of
discrimination varies with the experiment and is described
in 6.2.

A potential problem with the experiment setup is that if
some ISP in the wide area (outside our Emulab environment)
is discriminating traffic between the Emulab clients and the
PlanetLab nodes, then NANO will not be able to detect that
since NANO only has data from the NANO agents which all
use the ISP outside of Emulab. However, even if an external
ISP is discriminating traffic from Emulab, it should not af-
fect our results, as the traffic would be discriminated for all
Emulab clients and the discriminated performance would be
considered as the baseline for our evaluation.

6.1.2  Emulating ISP discrimination

Discrimination is performed by running Click on the Em-
ulab node that acts as the ISP router to connect the ISP
clients to the Internet (see Figure 5). We pass the client traf-
fic through the Click router running as a kernel module on
the router node. We used a combination of Click elements
to perform various forms of discrimination including proba-
bilistically dropping packets on all flows, or flows which ex-
ceed a certain length, dropping of TCP acknowledgements,
dropping packets for a particular service or destination, and

sending TCP RST packets back to the client (similar to the
practice by Comcast).

We used the available Click router elements like /PClas-
sifier to classify packets based on the various IP and TCP
fields, RandomSample for dropping packets and, Aggre-
gatelPFlows and a modified version of AveragePktCounter
to implement classifying flows which exceed a certain
length. Running Click router as a kernel module was suf-
ficient to ensure that the Emulab ISP node could sustain a
reasonable amount of traffic (maximum of 20Mbps) during
the experiments.

Figure 6 shows an example of discrimination using Click
router. In this case we have configured the router to proba-
bilistically drop TCP packets of flows which have exceeded
13000 packets. For the flow shown in Figure 6, this happens
at around 10 seconds after the start of the flow: we see a
clear drop in the throughput (calculated as bytes transferred
per ten seconds) as well as the rate of cumulation of packets
for the flow.

6.1.3 Clients and services

We use a set of PlanetLab nodes, which are geographically
distributed and have a wide range of RTTs from the client
nodes in Emulab. We have configured two kinds of services
on the PlanetLab nodes. First, we configure two Web servers
on each of these PlanetLab nodes to represent two different
Web services. Second, we have configured the PlanetLab
nodes to act as BitTorrent clients.

The clients in the Emulab environment access these ser-
vices through their emulated ISPs and the service perfor-
mance can be impacted if the ISP discriminates. Each client
also runs an instance of NANO-Agent which periodically
reports the performance data to a central NANO-server run-
ning elsewhere on the Internet.

6.2 Experiments

We have performed three experiments to evaluate the ef-
ficacy of the NANOsystem. Here we describe these exper-
iments. Table 1 summaries the configurations for each of
these experiments.

6.2.1 Experiment 1 (Simple Discrimination).

In this experiment we emulate a scenario where some ISPs
discriminate the HTTP traffic, however, the location of the
HTTP servers is a confounding variable, which makes it dif-
ficult to identify the ISPs that are discriminating. We use
the TCP throughput achieved during the HTTP fetch as the
performance variable.

To create this confounding effect, we divide the PlanetLab
nodes on which the HTTP servers run into two groups. The
near nodes are the ones which have a less than 60ms RTT
from the Emulab testbed site. The far nodes are the ones
which have a RTT between 60ms and 120ms from the Emu-
lab testbed site. We have 146 near nodes and 167 far nodes,
and 313 servers in all.

Clients in each ISP repeatedly fetch content, each time
from a randomly chosen PlanetLab server. We configure the
clients in each ISP to use different probabilities for picking
a random HTTP server from the set of near or far nodes.



ISPs Ny, Na, and N3 are neutral. ISP Dy and ISP D,
discriminate in each experiment.

Simple Discrimination. ISPs D and D5 discriminate the
HTTP traffic for all their clients. ISPs D; and Dy drop
0.1% and 0.3% of the packets respectively. Location of
the HTTP server is a confounding variable. ISPs N, Na,
N3, D1, and D5 access the content from the near Planet-
Lab servers with probabilities, 0.4, 0.1, 0.7, 0.6, and 0.9,
respectively, and access the far PlanetLab servers with the
remaining probability.

Long Flow Discrimination. We have two HTTP services,
S1 and Ss. ISPs D discriminates S7 and Do discriminate
the HTTP traffic for S5 for all their clients if the flow from
S1 or Sy exceeds certain limits. ISPs D; and Dy drop
0.1% and 0.3% of the packets for flows exceeding 10000
and 13000 packets respectively. Location of the servers
remains a confounder as in Experiment 1, with same prob-
abilities for the near HTTP servers. All HTTP servers pro-
vide both S; and S5, albeit on different ports.

BitTorrent Discrimination. ISP D, discriminates the
BitTorrent traffic for all its clients if the BitTorrent peer
is not in certain subset of PlanetLab nodes. ISP D5 dis-
criminates by dropping 0.3% of the packets of the flows
that are established with the non-preferred peers.

Table 1: Summary of Experiments

The exact probabilities are described in Table 1. Because
the location of the server also has an impact on the perfor-
mance and because the distribution of location of servers is
different across the ISPs, the location of the sever becomes
a confounding variable. Such confounding effects can be
common in content distribution environments where the cus-
tomers of a neutral ISP may experience poorer service be-
cause of less ideal servers, where as the aggregate experience
for the customers in a discriminating ISP might be better.

In this experiment, the ISPs discriminate by randomly
dropping the packets on the TCP flows. Table 1 summarizes
the configuration for dropping the packets.

This experiment demonstrates NANQO’s capability to deal
with confounding effects and correctly identify the discrim-
inating ISP.

6.2.2 Experiment 2 (Long Flow Discrimination)

This experiment is similar to Experiment 1, except that in
this experiment we consider two HTTP services, S and Sy
and two different ISPs discriminate against each under cer-
tain conditions. One of the discriminating ISP discriminates
traffic between its clients and S, if the flow exceeds a cer-
tain threshold. The other discriminating ISP discriminates
traffic with S5 if the flow exceeds a certain other threshold.
The exact parameters are described in Table 1.
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This experiment demonstrates NANO’s capability to si-
multaneously deal with multiple services and also inferring
the criteria for discrimination for each.

6.2.3 Experiment 3 (BitTorent Discrimination)

In this experiment we consider BitTorrent as a service.
The ISPs discriminating ISPs remain neutral if the peer for
its client is in one of the preferred locations, otherwise, if the
peer is in a non-preferred location, then the discriminating
ISP discriminates by dropping the packet for the flow. Such
a scenario is perceivable because an ISP may not mind if the
BitTorrent peers are accessible through a peering link, but it
may discriminate if the peer is accessible through a transit
link for which the ISP has to pay more. This experiment
is similar to Experiment 2, except that the discrimination
criteria is different.

We ran each experiment for approximately 6 hours and
collected the data at the NANO-server. The results in the
following section are based on a run in the week of January
24, 2000.

6.3 Results

In this section we present the results of applying NANO
in the experiments described in Section 6.2. In Figure 7, we
present the aggregate distribution of performance from all
the ISPs to show that it is not easy to tell the discriminat-
ing ISPs apart. In Section 6.3.1 we show that the variables
that we collect are sufficient to predict the performance in
each of the three experiments. In Section 6.3.2, we present
the causal effect values that NANO computes for each ISP in
each of the experiments. Finally, in Section 6.3.3 we demon-
strate that NANO can also infer the criteria that the ISP is
using.

Figure 7 shows the distribution of performance for the
clients of each ISP in all three experiments. For the first
two experiments, we compute the average throughput over
the life of the flow and use that as a metric. It is difficult
to identify the discriminating ISP for any of the experiments
in a straight forward manner. In the first two experiments
(Figures 7(a,b)), the overall distribution of performance for
the discriminating ISPs is similar or better than the distribu-
tion of performance in the neutral ISPs because the clients in
the discriminating ISPs access the near servers with higher
probability. Because geographically closer servers are more
likely to provide higher throughput, we observe a larger
fraction of higher throughput sessions for the discriminating
ISPs. Similarly, the throughput for most BitTorrent clients in
Dy is very similar to the throughput in the other ISPs when
indeed the ISP is discriminating against a subset of destina-
tions.

6.3.1

In Section 3.3 we presented a heuristic for determining
whether the variables we collect are sufficient. We argued
that if we have enough variables, then we should be able to
predict the performance using a regression function trained
on the values for those variables, and that the relative error
should be independent of the outcome variable. We demon-

Determining sufficiency of confounders
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Figure 7: Overall performance distribution for the clients in all the ISPs. The distributions for the discriminating ISPs are not distinguishable.

strate the heuristic here for the Long Flow Discrimination
experiment (Experiment 2).

NANO-Agents report the current length of all active flows
in the performance summaries that they send to the NANO-
server. We used this variable and the server location to
predict the performance (throughput). We stratify the data
on two dimensions: server location and flow’s cumulative
packets (current length). For this we consider all the servers
sharing a particular 24 subnet as sharing a location and be-
longing in the same stratum. With this we ended up with
121 stratum on the server location dimension, with an aver-
age of 3 servers per stratum. We also created 1000 packet
bins for cumulative packets of the flow. We used the average
throughput over NANO-agent’s reporting interval as the out-
come variable. Next, we took a sample of 30 performance
summaries falling in each two-dimensional stratum to train
a regression function for each stratum. We then used these
functions to predict the throughput for the traffic over the
next hour and compute the relative error as |y — ¢|/y, where
y is the ground-truth value of throughput and g is the pre-
dicted value. We ignored the strata that had fewer than 30
summaries; between 3% and 8% stratum were rejected for
each ISP across the three experiments.

Figure 8 shows the distribution of relative error for each of
the three experiments. We believe that the error is acceptable
because the standard deviation of throughput on the Planet-
Lab sites is quite large. In addition, we found that the error
(without taking the absolute value) was centered at zero and
showed small correlation with the outcome value. For the
Long Flow Discrimination experiment, the correlation val-
ues are 0.01, 0.08, 0.05 0.01 and 0.05 for the ISPs N1, No,
N3, Dy and Ds, respectively.

6.3.2 Estimating causal effect

Using Eq.4 we compute the causal effect of each ISP for
each experiment. As discussed in Section 4.1.2, when com-
puting the causal effect of one ISP, we use the average per-
formance of all other (discriminating and neutral) ISPs as
the baseline. Unfortunately, because our experimental setup
is small, we did not have samples from all ISPs for all the
stratum. To overcome this problem, we only consider the
stratum where at least three of the five ISPs in our experi-
ment had 20 samples or more each. As a result, the baseline
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Figure 8: Distribution of relative error in predicting the throughput
for the Long Flow Discrimination experiment with the variables that
NANO collects.

performance for some of the strata might comprise fewer
than four ISPs. For the Long Flow Discrimination experi-
ment, only 4% of strata did not meet the other criteria. For
the other two experiments, even fewer strata were rejected.

Because of the large number of strata, it is not possible to
list here the causal effect of each ISP for each strata. Instead,
we present the overall effect computed using Eq.4 for each
ISP, service and experiment in Table 2. Negative numbers
indicate relatively adverse causal effect, and we can label
sufficiently large negative effect as discrimination. NANO
correctly identifies ISPs that are discriminating for all the
three experiments. Note that NANO is able to identify in
Long Flow Discrimination experiment that ISP Dy is not
discriminating service S7 and ISP D, is not discriminating
against service Ss.

Also interesting to note is the extent of causal effect that
NANO determines. For the Simple Discrimination experi-
ment, ISP D; was dropping packets with lesser probability
than ISP Dsy; correspondingly, we see that the causal im-
pact of D is less severe than that of ISP Dy. Similarly,
in the Long Flow Discrimination experiment, the causal im-



Service | ISPN; ISP N, ISP N3 ISPD; ISP D,
Experiment 1. Simple Discrimination
HTTP 2.10 8.39 14.65 -108.64 -424.91
Experiment 2. Long Flow Discrimination
HTTP S 5.17 4.80 18.9 -61.20 5.36
HTTP S; 2.20 6.1 4.65 3.82 -40.91
Experiment 3. BitTorrent Discrimination
BitTorrent | 1.16 -10.24 1.53 — -306.13

Table 2: Causal effect for each ISP. NANO correctly identifies the dis-
criminating and neutral ISPs. Note: All the numbers are in KB/s units.
Negative numbers indicate poorer performance.

pact for both ISP D; and D is less severe compared to the
Simple discrimination experiment because in the Long Flow
Discrimination experiment the two ISPs only start discrim-
inating a flow once it reaches a certain cumulative packets
threshold. As a result, part of the flow enjoys undiscrimi-
nated performance, dampening the overall causal effect.

Finally, we wish to note that in the course of our exper-
iments, we encountered PlanetLab nodes, paths to which
were very lossy to begin with. When the discriminating ISPs
dropped packets for the flows with such PlanetLab nodes, we
did not notice any appreciable decrease in throughput. As a
result, NANO did not detect any significant discrimination
for these flows, although some discrimination was in fact
happening. This, however, is in line with our original goal of
detecting net neutrality violations that result in performance
degradation.

6.3.3 Inferring discrimination criteria

As discussed in Section 4.1.3, NANO can infer the dis-
crimination criteria that the ISP might be using. Here we
demonstrate this capability for the Long Flow Discrimina-
tion experiment.

To infer the criteria that ISP D, is using, we labelled the
stratum on which we detected more than 100KB/s of causal
effect as the discriminated strata and the remaining strata
as undiscriminated strata. We ran the J.48 decision tree on
the labelled dataset, where the data columns included the
/24 subnet (Location of servers and average number of
cumulative packets (cum_pkt s) for a session. The decision
tree produces a rule that cumpkts <= 10103 —-—>
not_discriminated, cumpkts > 10103 —--—>
discriminated, and yields a 89% accuracy. The fact
that the tree ignored the location variable completely
shows that ISP is not discriminating based on destination.
Instead, the rule suggests that the ISP is discriminating
when the flow’s duration is around 10000 packets. Recall
from Table 1 that this is indeed the criteria that ISP D uses
for discrimination.

We have similarly obtained discrimination criteria for ISP
Dy for Long Flow Discrimination experiment as well as the
BitTorrent Discrimination experiment.
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6.3.4 System Overhead

NANO uses efficient techniques and data structures to re-
duce the reporting overhead from the NANO-Agents to the
NANO-Servers as discussed in Section 5. Our experiments,
showed a very low reporting overhead from the NANO-
Agents running on Emulab nodes to our NANO-Server. For
the Long Flow Discrimination experiment, the experiments
transferred a total of 165GB of traffic on the client nodes
over a period of over 6 hours. The total reporting overhead
for this experiment was only 7MB, with NANO-Agents re-
porting statistics for a total of more than 14,000 flows along
with other system information. This shows that NANO has
very low reporting overhead.

7. Discussion

In this section, we address various issues with NANO. We
first discuss various strategies for protecting user privacy
when collecting data at NANO-Agents. We then discuss
how to protect the integrity of the data collected at NANO-
Agents (i.e., how to control scenarios where NANO-Agents
might lie). We also describe scenarios where ISPs might
skew the statistical distributions of various performance met-
rics to mislead NANO’s statistical inference, as well as pos-
sible defenses against this evasion.

7.1 Privacy

NANO collects performance-related information from
NANO-Agents by passively monitoring traffic; it then passes
performance-related statistics from this traffic back to the
NANO-Server, which performs inference. This passively
collected information may contain potentially sensitive in-
formation, in particular destinations a client has visited
and content it has downloaded. Unfortunately, standard
anonymization techniques, such as anonymizing IP ad-
dresses and various other features (e.g., browser type, oper-
ating system) would obfuscate the very features used to strat-
ify the data, thus preventing causal inference. Accordingly,
we must apply techniques that somehow mask the identities
of the clients but preserve the features that NANO uses to
stratify the data.

Several methods could help NANO preserve client pri-
vacy. First, NANO-Agents could collect data from only
the top 'k’ Web sites (e.g., according to Alexa) and strip
personally-identifiable information from the payloads of this
traffic. The data collected from clients would thus only
reveal whether they had visited popular sites (not overly
sensitive, since many users visit these sites) and the per-
formance they were experiencing to those sites. Second,
NANO could use a combination of passive and active mea-
surements to produce the corpus of data used for inference;
in such cases, the NANO-Server would receive all mea-
surements, but would not be able to distinguish which traf-
fic was generated solely to probe the network and which
traffic was actually initiated by the client. Third, a client
might perform some amount of pre-processing before pass-
ing data to the NANO-Server. The client could, for example,
pre-process the traces to produce relevant statistics, without
passing complete traffic traces to the NANO-Server; some



amount of stratification could even be performed at the client
itself. Finally, clients using NANO might send their reports
through an anonymizing network (e.g., Freenet [4]) that ob-
fuscates the source of the original report. Of course, the IP
addresses of the clients would still be contained in the traffic
traces, but we envision that in the process of mixing, IP ad-
dresses on various traces could be swapped without affecting
the stratification. “Mixing” records collected from NANO-
Agents is a subject for future work.

7.2 Integrity

NANO-Agents could lie about the data they collected, ei-
ther by producing false traces, or by modifying the statis-
tics about the traffic observed at the client. In these cases,
it may be very difficult to detect when a client is reporting
false statistics about its observed network performance. We
suggest two possible techniques that could help mitigate this
possibility. First, NANO could collect data from NANO-
Agents that have similar values for various confounding fac-
tors (e.g., same upstream ISP, same portion of the network
topology); if, in these cases, reported performance measure-
ments yield continuous discrepancies, NANO could deter-
mine that a NANO-Agent was reporting inaccurate results.

On the other hand, it is possible that, given knowledge of
the distributions that NANO is measuring, that ISPs might
be able to conceal the presence of discrimination by affect-
ing the mean performance values. As described in Section 4,
NANO establishes causality by measuring the difference in
expected values for response times given the use of a specific
ISP and its deviation from baseline measurements. However,
an ISP could leave the mean value unaffected by giving ex-
ceptionally good performance to some clients and degrad-
ing performance for others. To defend against this type of
attack, we imagine that NANO might be extended in two
ways. First, we could modify NANO’s causal inference al-
gorithms to operate on multiple points in the response-time
distribution, as opposed to simply inferring causality based
on mean values. Second, presuming that an ISP’s attempt to
game the detection may vary over a range of time, we could
run NANO’s inference algorithm over different time granu-
larities to attempt to catch more fine-grained variations in an
ISP’s policies across users, services, or applications.

8. Related Work

This section surveys previous projects that have attempted
to characterize or prevent ISP discrimination.

Measurement tools. Glasnost [7,10] detects TCP reset poi-
soning for connections of peer-to-peer applications. It sim-
ulates the BitTorrent protocol by running an active exper-
iment from the Glasnost server to the end-host. It detects
any spurious TCP RST packets which might be generated
by the ISP to throttle the BitTorrent protocol. This approach
has the drawback that if the ISPs change the discrimination
mechanism then it would be difficult for Glasnost to detect
throttling. Similarly, NVLens [29] focuses on detection of
performance degradation among backbone ISPs via setting
of ToS bits in the IP headers of the packets.
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Tripwire uses a fingerprint-based technique to detect mod-
ification of in-flight packets, such as for insertion of adver-
tisements [20]. This is an important class of neutrality vi-
olation, but we focus on violations that result in discrimi-
nation and performance degradation, rather than modifica-
tion of actual content. These existing measurement tech-
niques rely on active measurements and focus on specific
discrimination mechanisms employed by the ISP. In con-
trast, NANO relies on in situ measurements, which allow
for more robust detection, and on “black box” causal infer-
ence, which is more general in the face of evolving discrim-
ination. Both Network Diagnostic Tool (NDT) [3], which
performs test to end-users’ machine to diagnose problems
near the end-user, and Network Path and Application Diag-
nostics (NPAD) [8], which diagnoses network performance
issues by extrapolating TCP performance to another location
given measurements to the client from a server, rely on active
client probing to detect network performance issues. These
tools are deployed as part of a recently announced network
transparency initiative M-Lab [18], a platform for hosting
research tools to measure ISP discrimination.

Comparing performance across ISPs. NetDiff [17] de-
tects performance differences between backbone ISPs. Net-
Diff uses the Geo-location and spread as a normalizing fac-
tor for fair comparison between ISPs, and in a sense adjusts
for a confounding factor in the assertion that one ISP is bet-
ter than another. NANO’s agenda is detecting per-service
discrimination which introduces additional confounding fac-
tors. Also, NetDiff uses ICMP packets to probe the paths,
however, an ISP can easily thwart the efforts by detect-
ing such probe packets and not discriminating them or the
ISP could be specifically discriminating a particular service.
NANO overcomes these difficulties by passively monitoring
the performance of the various services. NANO can draw on
previous work on characterizing ISP networks [16] and mon-
itoring ISP SLA [22] to adjust for ISP topology differences.
Keynote [14] is another application that compares perfor-
mance across backbone ISPs; however, in addition to the
above drawbacks it also requires ISP co-operation to place
measurement nodes, which may not be possible.

Comparing services within an ISP. Our approach to infer-
ring the effect of an ISP’s policy on a service’s performance
relies on comparing performance of a service across multi-
ple ISPs. Another interesting point in the design space is
comparison performance of similar services within an ISP
and then determining whether there is a difference in perfor-
mance among these services; for example, NVLens [29], for
instance, compares the latency for BitTorrent packets with
the performance for HTTP packets. We believe that while in-
teresting, this choice of comparison presents additional chal-
lenges that can be difficult to overcome. The services may
differ in ways that naturally affect their performance: For ex-
ample, a service that sends packets at a higher burst-rate may
experience higher loss and latency for similar average trans-
fer rate. Even if two services have similar traffic patterns,
(e.g., due to both using TCP), the completion time for a re-
quest may depend on additional server side variables, such



as the back-end delays, caching rate, or rate-limiting at the
server end. A fair direct comparison between performance
would require comparing the performance of services that
are similar in all aspects that can affect a services perfor-
mance; this can be difficult to achieve in general.

Architectures and testbeds. Yang et al. [28] propose a way
to prevent ISPs from discriminating against packets alto-
gether, but they require changes to user traffic (e.g., encryp-
tion) unlike NANO which only detects discrimination based
on passive measurements. We ultimately hope to use Satel-
liteLab [6] nodes to directly emulate random-treatment on
the Internet, as part of NANO. Unfortunately, at this time,
the satellite nodes in the SatelliteLab system only support
relaying the traffic that the planet nodes generate, which in-
troduces an additional confounding factor.

9. Conclusion

This paper presented NANO, a system that applies causal
inference techniques to passively collected data from end-
hosts to detect service degradation because of discrimina-
tion by ISPs. Our evaluation shows that NANO accurately
determines when an ISP is causing performance degradation
along a network path, even when various confounding fac-
tors may complicate the inference. We successfully demon-
strated NANO’s ability to detect discrimination for various
discrimination policies and application types, thus demon-
strating that NANO’s detection is general, and can detect
discrimination even when the ISP’s discrimination policies
are not known a priori.

NANO’s generality follows directly from its approach:
Rather than applying specific rules to detect specific types of
discrimination and actively probing ISPs to try to find cases
where those rules are violated NANO observes in situ traf-
fic and performs causal inference to determine whether the
characteristics of the actual application traffic itself shows
any variations that can be attributed to the ISP. Observ-
ing the actual application traffic and applying causal infer-
ence makes NANO both robust to evasion and future-proof
against discrimination policies and mechanisms that ISPs
might deploy.

Our next step is to deploy NANO as an operational sys-
tem so that anyone can use NANO to determine whether
their access network is discriminating. We plan to collect
data from a wide range of heterogeneous NANO-Agents de-
ployed across the Internet and offer NANO-Server as a ser-
vice. We are currently working with a large content provider
to deploy NANO on a large, geographically distributed mea-
surement platform as part of a larger initiative to make com-
munication networks more transparent.
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