
Building a Fast, Virtualized Data Plane
with Programmable Hardware

Muhammad Bilal Anwer and Nick Feamster
School of Computer Science, Georgia Tech

ABSTRACT

Network virtualization allows many networks to share the
same underlying physical topology; this technology has of-
fered promise both for experimentation and for hosting mul-
tiple networks on a single shared physical infrastructure.
Much attention has focused on virtualizing the network con-
trol plane, but, ultimately, a limiting factor in the deployment
of these virtual networks is data-plane performance: Virtual
networks must ultimately forward packets at rates that are
comparable to native, hardware-based approaches. Aside
from proprietary solutions from vendors, hardware support
for virtualized data planes is limited. The advent of open,
programmable network hardware promises flexibility, speed,
and resource isolation, but, unfortunately, hardware does not
naturally lend itself to virtualization. We leverage emerg-
ing trends in programmable hardware to design a flexible,
hardware-based data plane for virtual networks. We present
the design, implementation, and preliminary evaluation of
this hardware-based data plane and show how the proposed
design can support many virtual networks without compro-
mising performance or isolation.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign C.2.6 [Computer-Communication Networks]: Internet-
working

General Terms: Algorithms, Design, Experimentation, Per-
formance

Keywords: network virtualization, NetFPGA

1. Introduction

Network virtualization enables many logical networks to
operate on the same, shared physical infrastructure. Virtual
networks comprise virtual nodes and virtual links. Creating
virtual nodes typically involves augmenting the node with a
virtual environment (i.e., either a virtual machine like Xen
or VMWare, or virtual container like OpenVZ). Creating
virtual links involves creating tunnels between these virtual
nodes (e.g., with Ethernet-based GRE tunneling [5]). This
technology potentially enables multiple service providers to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VISA’09, August 17, 2009, Barcelona, Spain.

Copyright 2009 ACM 978­1­60558­595­6/09/08 ...$5.00.

share the cost of physical infrastructure. Major router ven-
dors have begun to embrace router virtualization [7, 12, 14],
and the research community has followed suit in building
support for both virtual network infrastructures [3–5,17] and
services that could run on top of this infrastructure [10].
Virtual networks should offer good performance: The in-

frastructure should forward packets at rates that are com-
parable to a native hardware environment, especially as the
number of users and virtual networks increases. The infras-
tructure should also provide strong isolation: Co-existing
virtual networks should not interfere with one another. A
logical approach for achieving both good performance and
strong isolation is to implement the data plane in hardware.
To date, however, most virtual networks provide only soft-
ware support for packet forwarding; these approaches pro-
vide flexibility, ease of deployment, low cost, and fast de-
ployment, but poor packet forwarding rates and little to no
isolation guarantees.
This paper explores how programmable network hardware

can help us build virtual networks that offer both flexibil-
ity and programmability while still achieving good perfor-
mance and isolation. The advent of programmable network
hardware (e.g., NetFPGA [13, 18]), suggests that, indeed, it
may be possible to have the best of both worlds. Of course,
even programmable network hardware does not inherently
lend itself to virtualization, since it is fundamentally difficult
to virtualize gates and physical memory. This paper repre-
sents a first step towards tackling these challenges. Specifi-
cally, we explore how programmable network hardware—
specifically NetFPGA—might be programmed to support
fast packet forwarding for multiple virtual networks running
on the same physical infrastructure. Although hardware-
based forwarding promises fast packet forwarding rates, the
hardware itself must be shared across many virtual nodes on
the same machine. Doing so in a way that supports many
virtual nodes on the same machine requires clever resource
sharing. Our approach virtualizes the host using a host-based
virtualized operating system (e.g., OpenVZ [16], Xen [2]);
we virtualize the data plane by multiplexing hardware re-
sources.
One of the major challenges in designing a hardware-

based platform for a virtualized data plane that achieves both
high performance and isolation is that hardware resources
are fixed and limited. The programmable hardware can sup-
port only a finite (and limited) amount of logic. To make
the most efficient use of the available physical resources, we
must design a platform that shares common functions that
are common between virtual networks while still isolating
aspects that are specific to each virtual network (e.g., the for-

1

warding tables themselves). Thus, one of the main contribu-
tions of this paper is a design for hardware-based network
virtualization that efficiently shares the limited hardware
resources without compromising packet-forwarding perfor-
mance or isolation.
We present a preliminary implementation and evaluation

of a hardware-based, fast, customizable virtualized data
plane. Our evaluation shows that our design provides the
same level of forwarding performance as native hardware
forwarding. Importantly for virtual networking, our design
shares common hardware elements between multiple virtual
routers on the same physical node, which achieves up to 75%
savings in the overall amount of logic that is required to im-
plement independent physical routers. Our preliminary de-
sign achieves this sharing without compromising isolation:
the virtual router’s packet drop behavior under congestion
is identical to the behavior of a single physical router, but
our implementation does not provide strong isolation guar-
antees to virtual router users; i.e., if a user exceeds his band-
width limit than other users are affected. Many issues remain
to make our NetFPGA-based platform fully functional—in
particular, we must augment the design to support simulta-
neous data-plane forwarding and control-plane updates, and
design scheduling algorithms to ensure fairness and isola-
tion between virtual networks hosted on the same hardware.
This paper represents an initial proof-of-concept for imple-
menting hardware-accelerated packet forwarding for virtual
networks.
The rest of this paper is organized as follows. Sec-

tion 2 provides background and related work on both pro-
grammable hardware and the NetFPGA platform. Section 3
presents the basic design of a virtualized data plane based on
programmable hardware; this design is agnostic to any spe-
cific programmable hardware platform. Section 4 presents
an implementation of our design using the NetFPGA plat-
form. Section 5 presents a preliminary evaluation of the
platform’s performance; Section 6 discusses limitations and
possible extensions of the current implementation. Section 7
concludes with a summary and discussion of future work.

2. Background and Related Work

This section offers background on programmable hard-
ware technologies in networking, as well as various attempts
to design and implement virtual routers.
Generally, there are three options for high-speed

packet processing: Application Specific Integrated Circuits
(ASICs), Field Programmable Gate Arrays (FPGAs), and
Network Processors. ASICs are typically customized for a
specific application, such as desktop processors or graphical
processing units. ASICs can host many transistors on a sin-
gle chip and run at higher speeds, but development cycles
are slower, and manufacturing is more complicated, result-
ing in high, non-recurring engineering cost. FPGAs trade
complexity and performance for flexibility: they can be pro-
grammed for a specific purpose after manufacturing. FP-
GAs can achieve clock speeds up to 500 MHz, sufficient for
many high-end applications including switches and routers
that require processing of hundreds of thousands of flows
per second. Network processors have feature sets that are

specifically designed for networking applications and are
used in routers, switches, firewalls, and intrusion detection
systems. Network processors are also programmable and
provide generic functions that can be used for specific net-
working applications. There are not many examples of high-
speed network virtualization solutions, SPP [17] is one of
them which uses Intel IXP [11] network processors for vir-
tualization. Network processors are quite powerful, but with
the change of network processor vendor or drop of support
from vendor for a particular network processor, maintenance
of specific implementations becomes difficult. Similarly,
any change in the vendor provided network processor pro-
gramming framework is also challenging, in terms of net-
work application maintenance.
Juniper E-series routers provide support for virtual

routers [12]. These E-Series routers can support up to 1,000
forwarding tables, but there are no implementation details
about these virtual routers, such as whether they use tunnel-
ing or encapsulation, or whether they rewrite packet headers
or there is some other technique being used. In contrast,
we are developing an hardware-based open virtualized data
plane which can be used on commodity platforms.
NetFPGA [13, 18] is an FPGA-based platform for packet

processing. The platform uses the Xilinx FPGA and has four
Gigabit Ethernet interfaces. The card can reside in the PCI
or PCI-X slot of any machine and can be programmed like a
normal FPGA. It has two FPGAs: the Virtex2Pro 50 that
hosts the user program logic, and a SPARTAN II, which
has PCI interface and communication logic. The card has
4.5 MB of SRAM, which can operate at 125 MHz; the size
of DRAM is 64 MB. With a 125MHz clock rate and a 64-bit
wide data path, the FPGA can provide a theoretical through-
put of 8 Gbps. Our design uses SRAM for packet storage
and BRAM and SRL16e storage for forwarding information
and uses the PCI interface to send or receive packets from
the host machine operating system. The NetFPGA project
provides reference implementations for various capabilities,
such as the ability to push the Linux routing table to the hard-
ware. Our framework extends this implementation.

3. Design Goals

This section outlines our design goals for a hardware-
based virtual data plane, as well as the challenges with
achieving each of these design goals.

1. Virtualization at layer two. Many alternative proto-
cols to IP, like Accountable Internet Protocol (AIP) [1],
Host Identity Protocol (HIP) [15], and Locator Iden-
tifier Separation Protocol (LISP) [9] exist, but there
is no way to understand the behavior and perfor-
mance of these protocols at higher speeds. Experi-
menters and service providers may wish to build vir-
tual networks that run these or some other protocols
besides IP at layer three. Therefore, we aim to fa-
cilitate virtual networks that provide the appearance
of layer-two connectivity between virtual nodes. Al-
ternatives for achieving this design goal, are tunnel-
ing/encapsulation, rewriting packet headers, or redi-
recting packets based on virtual MAC addresses. In
Section 4, we justify our decision to use redirection.

2

2. Fast forwarding. The infrastructure should forward
packets as quickly as possible. To achieve this goal,
we push each virtual node’s forwarding tables to hard-
ware, so that the interface card itself can forward
packets on behalf of the virtual node. Forwarding
packets directly in hardware, rather than passing each
packet up to a software routing table in the virtual
context, results in significantly faster forwarding rates,
less latency, and higher throughput. The alternative—
copying packets from the card to the host operating
system—requires servicing interrupts, copying pack-
ets to memory, and processing the packet in software,
which is significantly slower than performing the same
set of operations in hardware.

3. Resource guarantees per virtual network. The virtu-
alization infrastructure should be able to allocate spe-
cific resources (bandwidth, memory) to specific virtual
networks. Providing such guarantees in software can
be difficult; in contrast, providing hard resource guar-
antees in hardware is easier. Given that the hardware
forwarding infrastructure has a fixed number of phys-
ical interfaces, however, the infrastructure must deter-
mine how to divide resources across the virtual inter-
faces that are dedicated to a single physical interface.

The next section describes the hardware architecture that al-
lows us to achieve these goals.

4. Design and Preliminary Implementation

This section describes a design and preliminary imple-
mentation of a hardware-based virtual data plane. The sys-
tem associates each incoming packet with a virtual environ-
ment and forwarding table. In contrast to previous work,
the hardware itself makes forwarding decisions based on
the packet’s association to a virtual forwarding environment;
this design provides fast, hardware-based forwarding for up
to eight virtual routers running in parallel on shared phys-
ical hardware. The number of virtual routers is limited by
on-chip memory usage; ultimately, placing forwarding ta-
bles off-chip may significantly increase the number of vir-
tual routers. By separating the control plane for each virtual
node (i.e., the routing protocols that compute paths) from the
data plane (i.e., the infrastructure responsible for forwarding
packets), each virtual node can have a separate control plane,
independent of the data-plane implementation.

Overview In our current implementation, each virtual envi-
ronment can have up to four virtual ports; this is a charac-
teristic of our current NetFPGA-based implementation, not
a fundamental limitation of the design itself. The physical
router has four output ports and, hence, four output queues.
Each virtual MAC is associated with one output queue at
any time; this association is not fixed and changes with each
incoming packet. Increasing the number of output queues
allows us to increase the number of virtual ports per virtual
router. The maximum number of virtual ports then depends
on the resources that are available for the output queues. In
addition to more output queues, we also need to increase the
size of VMAC-VE (Virtual MAC to Virtual Environment)

NetFPGA
Host

VE1

Routing

Table 1

OpenVZ

VR Daemon

RT1 to RT8

VE2

Routing

Table 2

Upto 8 hosts

VE3

Routing

Table 3

VE4

Routing

Table 4

Security Daemon

VE5

Routing

Table 5

VE6

Routing

Table 6

VE7

Routing

Table 7

VE8

Routing

Table 8

Upto 8 hosts Upto 8 hosts Upto 8 hosts

Figure 1: OpenVZ and virtual router.

mapping table and the number of context registers associ-
ated with a particular instance of virtual router. There are
four context registers for each virtual router. These registers
help to add source MAC addresses for each outgoing packet,
depending upon the outgoing port of packet.
Each virtual port on the NetFPGA redirects the packet to

the appropriate virtual environment or forwards the packet
to the next node, depending on the destination address and
the packet’s association to a particular virtual environment.
We achieve this association by establishing a table that maps
virtual MAC addresses to virtual environment. These vir-
tual MAC addresses are assigned by the virtual environment
owner and can be changed at any time. By doing so, the
system can map traffic from virtual links to the appropriate
virtual environments without any tunneling.
In the remainder of this section, we describe the system

architecture. First, we describe the control plane, which al-
lows router users to install forwarding table entries into the
hardware, and how the system controls each virtual envi-
ronment’s access to the hardware. Next, we describe the
software interface between processes in each virtual envi-
ronment and the hardware. Finally, we describe the system’s
data plane, which multiplexes each packet into the appropri-
ate virtual environment based on its MAC address.

4.1 Control Plane

The virtual environment contains two contexts: the virtual
environment context (the “router user”) and the root con-
text (the “super user”). The router user has access to the
container that runs on the host machine. The super user
can control all of the virtual routers that are hosted on the
FPGA, while router users can only use the resources which
are allocated to them by the super user. Our virtual router
implementation has a set of registers in FPGA that provides
access to the super user and to the router users. This sep-
aration of privilege corresponds to what exists in a typical
OpenVZ setup, where multiple containers co-exist on a sin-
gle physical machine, but only the user in the root context
has access to super user privileges.

3

To install forwarding table paths different routing proto-
cols can be used that compute path and add these entries to
forwarding table. Virtual environment allows users to run
these protocols and update forwarding table entries accord-
ing to their own protocol’s calculations. For this update, se-
lection of the forwarding table in hardware is done using the
control register while a router user’s access to that forward-
ing table is controlled using VMAC-VE table.

Virtual environments As in previous work (e.g., Trel-
lis [5]), we virtualize the control plane by running multiple
virtual environments on the host machine. The number of
OpenVZ environments is independent of the virtual routers
sitting on FPGA, but the hardware can support at most eight
virtual containers; i.e., only eight virtual environments can
have fast path forwarding using the FPGA at one time. Each
container has a router user, which is the root user for the
container; the host operating system’s root user has super
user access to the virtual router. Router users can use a
command-line based tool to interact with their instance of
a virtual router. These users can read and write the routing
table entries and specify their own context register values.
All the update/read requests for routing table entries must

pass through the security daemon and the virtual router dae-
mon, as shown in Figure 1. The MAC addresses stored in
the context registers must be the same addresses that the vir-
tual router container uses to reply to ARP requests. Once a
virtual router user specifies the virtual port MAC addresses,
the super user enters these addresses in the VMAC-VE ta-
ble; this mechanism prevents a user from changing MAC
addresses arbitrarily.

Hardware access control This VMAC-VE table stores all of
the virtual environment ID numbers and their corresponding
MAC addresses. Initially, this table is empty but provides
access to a virtual router for a virtual environment user. The
system provides a mechanism for mediating router users’ ac-
cess to the hardware resources. The super user can modify
the VMAC-VE (VirtualMAC and Virtual Environmentmap-
ping) table. The super user grants the router user access to
the fast-path forwarding provided by the hardware virtual
router by adding the virtual environment ID and the corre-
sponding MAC addresses to the VMAC-VE table. If the su-
per user wants to destroy a virtual router or deny some users
access to the forwarding table, it simply removes the virtual
environment ID of the user and its corresponding MAC ad-
dresses. Access to this VMAC-VE table is provided by a
register file, which is only accessible to super user.

Control register As shown in Figure 1, each virtual envi-
ronment copies the routing table from its virtual environ-
ment to shared hardware. A 32-bit control register stores the
virtual environment ID. When a virtual environment needs
to update its routing tables, it sends its request to the vir-
tual router daemon via the security daemon. After verifying
the virtual environment’s permissions, this daemon uses the
control register to select routing tables that belong to the re-
questing virtual environment and updates the IP lookup and
ARP table entries for that virtual environment. After updat-
ing the table, the daemon resets the control register value.

4.2 Software Interface

As shown in Figure 1, the security daemon prevents unau-
thorized changes to the routing tables by controlling access
to the virtual router control register. The virtual router con-
trol register selects the virtual router for forwarding table up-
dates.The security daemon exposes an API that router users
can use to interact with their respective routers, including
reading or writing the routing table entries. Apart from pro-
viding secure access to all virtual router users, the security
daemon logs user requests to enable auditing.
The hardware-based fast path cannot process packets with

IP options or ARP packets. These packets are sent to the vir-
tual router daemon without any modifications. The virtual
router daemon also maintains a copy of the VMAC-VE ta-
ble. It examines at the packet’s destination MAC and sends
the packet to the corresponding virtual environment on the
host machine. Similarly, when the packet is sent from any
of the containers, it is first received by the virtual router dae-
mon through the security daemon, which sends the packet to
the respective virtual router in hardware for forwarding.
The super user can interact with all virtual routers via a

command-line interface. In addition to controlling router
user accesses by changing the VMAC-VE table, the super
user can examine and modify any router user’s routing table
entries using the control register.

4.3 Data Plane

To virtualize the data plane in a single physical router, the
router must associate each packet with its respective virtual
environment. To determine a packet’s association with a par-
ticular virtual environment, the router uses the virtual envi-
ronment’s MAC address; in addition to allowing or denying
access to the virtual router users, the VMAC-VE table deter-
mines how to forward packets to the appropriate virtual en-
vironment, as well as whether to forward or drop the packet.

Mapping virtual MACs to destination VEs Once the table
is populated and a new packet arrives at the virtual router,
its destination MAC is looked up in VMAC-VE table, which
provides a mapping between the virtual MAC addresses and
virtual environment IDs. Virtual MAC addresses in VMAC-
VE table correspond to theMAC addresses of the virtual eth-
ernet interfaces used by virtual environment. A user has ac-
cess to four registers, which can be used to update the MAC
address of the user’s choice. These MAC addresses must
be the same as the MAC addresses of virtual environment.
Since there are four ports on NetFPGA card each virtual en-
vironment has a maximum of four MAC addresses inside
this table; this is a limitation of our current implementation.
As explained earlier, increasing the number of output queues
and context registers will permit each virtual environment to
have more than four MAC addresses. The system uses a
CAM-based lookup mechanism to implement the VMAC-
VE table. This design choice makes the implementation in-
dependent of any particular vendor’s proprietary technology.
For example, the proprietary TEMAC core from Xilinx pro-
vides a MAC address filtering mechanism, but it can only
support 4 to 5 MAC addresses per TEMAC core, and most
importantly it cannot demultiplex the incoming packets to
the respective VE.

4

Figure 2: Virtual router table mappings.

Packet demultiplexing and forwarding All four physical
Ethernet ports of the router are set into promiscuous mode,
which allows the interface to receive any packet for any des-
tination. After receiving the packet, its destination MAC ad-
dress is extracted inside the virtual router lookup module. If
there is a match in the table, the packet processed and for-
warded; otherwise, it is dropped.
This table lookup also provides the virtual environment ID

(VE-ID) that switches router context for the packet that has
just been received. In a context switch, all four MAC ad-
dresses of the router are changed to the MAC addresses of
the virtual environment’s MAC addresses. As shown in Fig-
ure 2, the VE-ID indicates the respective IP lookup module.
In the case of IP lookup hit, the MAC address of next hop’s
IP is looked up in ARP lookup table. Once the MAC address
is found for the next hop IP, the router needs to provide the
source MAC address for the outgoing packet. Then, context
registers are used to append the corresponding source MAC
address and send the packet.
Based on the packet’s association with a VE, the context

register values are changed to correspond to the four MAC
addresses for virtual router in use. The router’s context re-
mains active for the duration of a packet’s traversal through
the FPGA and changes when the next incoming packet ar-
rives. For a packet each virtual port appears as one phys-
ical port with its own MAC address. Once the forwarding
engine decides a packet’s fate, it is directed to the appropri-
ate output port. The outgoing packet must have the source
MAC address that corresponds to the virtual port that sends
the packet. To provide each packet with its correct source
MAC address, the router uses context registers. The number
of context registers is equal to the number of virtual ports
associated with the particular router. The current implemen-
tation uses four registers, but this number can be increased
if the virtual router can support more virtual ports.

Shared functions Our design shares resources between vir-
tual routers on the same FPGA. It only replicates those re-
sources which are really necessary to implement fast path
forwarding. To understand the virtual router context and its
switching when new packets arrive, we describe the mod-
ules that can be shared in an actual router and modules that

Figure 3: Experimental setup for virtual router.

cannot be shared. Router modules that involve decoding
of packets, calculating checksums, decrementing TTLs, etc.
can be shared between different routers, as they do not main-
tain any state that is specific to a virtual environment. Sim-
ilarly, the input queues and input arbiter is shared between
the eight virtual routers. Packets belonging to any virtual
router can come into any of the input queues where the ar-
biter feeds these packets to the virtual router lookup module.
Output queues are shared between different virtual routers,
and packets from different virtual routers can be placed into
any output queue.

VE-specific functions Some resources cannot be shared be-
tween the routers. The most obvious among them is the
forwarding information base. In our current virtual router
implementation, we have used NetFPGA’s reference router
implementation as our base implementation. In this imple-
mentation a packet that needs to be forwarded, needs at least
three information resources namely IP lookup table, MAC
address resolution table and router’s MAC addresses. These
three resources are unique to every router instance and they
can not be removed and populated back again with every
new packet. Therefore, the architecture maintains a copy of
each of these resources for every virtual router. The current
implementation maintains a separate copy of these resources
for every virtual router instantiated inside the FPGA.

5. Results

This section presents the results of our preliminary eval-
uation. First, we evaluate the performance of the system;
we then discuss the implementation complexity for the vir-
tual router implementation (in terms of gates), compared to
its base router implementation. We show that our hardware-
based implementation provides comparable packet forward-
ing rates to Linux kernel packet forwarding. We then show
scalability of the implementation in terms of forwarding rate
by comparing forwarding rate of fixed sized packets with
variable number of virtual routers. We benchmark our im-
plementation against the base router implementation. The
system also provides isolation to the host resources. (At this
point, the system provides no bandwidth guarantees among
different virtual routers sitting on same FPGA card.) Finally,
we show that gate count for hosting multiple virtual routers
is 75% less as compared to the hardware required to host an
equivalent number of physical routers.
We used the NetFPGA-enabled routers in the Emulab

testbed [8] to evaluate the performance of our system. We
used a simple source, router, and sink topology. Figure 3
shows the experimental setup for the virtual router. For the

5

source and sink, we used hardware packet generator and re-
ceivers. The host machine for the Linux router had 3 GHz
single processor, 2 GB RAM, two 1 Gbps interfaces. We
sent a mix of traffic belonging to each of the different vir-
tual networks and send the traffic to the virtual router ac-
cordingly. Depending on packet’s association, the hardware
forwards the packet to the appropriate virtual router, which
in turn sends the traffic to the appropriate output queue.

5.1 Performance

We evaluate performance according to three requirements:
(1) forwarding rate, (2) scalability, and (3) isolation. We also
discuss how software-based definition of isolation changes
in the context of programmable hardware routers, as well as
how scalability is affected with limited hardware resources.

5.1.1 Packet forwarding rate

Previous work has measured the maximum sustain-
able packet forwarding rate for different configurations of
software-based virtual routers. We also measure packet for-
warding rates and show that hardware-accelerated forward-
ing can increase packet forwarding rates without incurring
any cost for host machine resources. To compare forward-
ing rates between hardware and software, we compare for-
warding rates of Linux and NetFPGA-based router imple-
mentations from NetFPGA group, as shown in Figure 4.
We show the maximum packet forwarding rate that can be
achieved for each configuration. The maximum forwarding
rate shown, about 1.4 million packets per second, is the max-
imum traffic rate which we were able to generate through the
NetFPGA-based packet generator.
The Linux kernel drops packets at high loads, but our con-

figuration could not send packets at a high enough rate to in-
duce packet drops in hardware. If we impose the condition
that zero packets should be dropped at the router, then the
packet forwarding rates for Linux router drops significantly,
but the forwarding rates for hardware based router remain
constant. Figure 4 shows packet forwarding rates when this
“no packet drop” condition is not imposed (i.e., we measure
the maximum sustainable forwarding rates).
For large packets, we were able to achieve the same for-

warding rate using in-kernel forwarding as we were using a
single port of NetFPGA router. Once the packet size drops
below 200 bytes, however, the software-based router is un-
able to keep up with the forwarding requirements. The na-
tive Linux forwarding rates look decent in our experimental
setup for larger packet sizes, but increasing the number of
interfaces will result in more significant differences. The
NetFPGA router can sustain up to 4 Gbps without incurring
any CPU usage of host machine. Since our current setup
had only two 1 Gbps network interface cards installed, we
were able to test for 1Gbps rates only; in ongoing work, we
are testing the card with higher traffic rates. To properly
compare the forwarding rates with native Linux forwarding,
would must add four NICs to compare performance with
NetFPGA hardware router; in such a configuration, we ex-
pect the forwarding rates to drop significantly.
As expected, hardware-based packet forwarding is signif-

icantly higher than the raw kernel-based packet forwarding.
The packet forwarding rate starts dropping with an increase

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 1000

Fo
rw

ar
din

g
Ra

te
 (’

00
0

pp
s)

Packet Size (bytes)

Packet Forwarding Rate, Comparison

NetFPGA, Base Router
Linux Raw Packet Forwarding

Figure 4: Comparison of forwarding rates.

in packet size. This drop is understandable since the input
ports cannot forward traffic greater than 1 Gbps. To com-
pare the overhead of virtualizing the hardware-based plat-
form, we compared the packet forwarding rate for a single
virtual router with that of the hardware-based packet for-
warder and found that the forwarding rate of the hardware-
based virtual router was the same. Because the base router
has a pipeline architecture, adding anothermodule consumes
more resources, but it had no effect on forwarding through-
put. The VMAC-VE table is implemented in CAM; it ac-
cepts and rejects packets in one stage, while the next module
demultiplexes the packets based on information forwarded
by virtual router lookup module. Therefore, there is no ef-
fect on forwarding rate for either implementation.

5.1.2 Scalability

Hardware-based virtual routers exploit the inherent par-
allelism in hardware and avoid context-switching overhead.
In a software-based virtual router, a context switch wastes
CPU cycles for saving and restoring packet context. Be-
cause hardware naturally lends itself to this parallelism, the
next challenge was to come up with a design that is scalable
and should not have a performance hit on packet forwarding
rates. Our current implementation has eight virtual routers
on one FPGA card; the number of virtual routers is only lim-
ited by the hardware resources available on Virtex-II Pro 50
FPGA card. (Section 5.2 discusses these trends.)
With each incoming packet, router must change its con-

text based on the MAC address of the incoming packet. A
scalable virtual router implementation should be able to do
this switching and forward packets with minimal affect on
forwarding rate. To observe virtual router switching over-
head in our implementation, we compared packet forward-
ing rates with different number of virtual routers. We used
fixed-size packets and increased the number of virtual router
from one to eight. We used the minimum packet size, 64
bytes, to provide least amount of time for context switching.
We found that increasing the number of virtual routers had
no effect on packet-forwarding rate.

5.1.3 Isolation

Forwarding packets in hardware provides relatively bet-
ter resource isolation then host machine-based virtual router

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

64 104
204

504
704

1004
1518

Fo
rw

ar
di

ng
 R

at
e

(’0
00

 p
ps

)

Packet Size

Hardware Router and 8 Virtual Routers

Virtual Router
Base Router

Figure 5: Data plane performance: virtual vs. reference router.

solution (although control plane traffic does not completely
isolate CPU resources). To measure CPU isolation, we used
eight virtual routers to forward traffic when the host CPU
was utilized at 100% by a user space process. We then sent
traffic, where each user had an assigned traffic quota in pack-
ets per second. When no user surpasses the assigned quotas,
the router forwards traffic according to the assigned rates,
with no packet loss. Our design still lacks several isolation-
related features which are discussed in Section 6.
To study the behavior of the virtual router under conges-

tion and to evaluate its isolation properties, we set up a topol-
ogy where two physical 1 Gbps ports of routers were flooded
at 1 Gbps and a sink node was connected to a third physical
1 Gbps port. To load the router, we used eight virtual routers
to forward traffic to the same output port. When two router
input ports are flooded using hardware-based packet gener-
ators, the router receives packets at 2 Gbps and forwards all
packets to the corresponding output port. At the output port,
queued packets are dropped at random; the router forwards
at a rate of 1 Gbps. This behavior is the same while flooding
one output port of the physical router, as well as in the vir-
tual router setup when all eight virtual routers are forwarding
traffic to one output port.
In a scenario where a particular virtual router forwards

traffic at a rate that is beyond a limit allowed by policy, the
router can enforce the limit at either the ingress or egress
port. To enforce this policy, the super user could read for-
warding rates periodically remove VMAC-VE table entries
to start dropping user’s packets, depending on allocations
and sustained forwarding rates.

5.2 Resource Utilization

We evaluated the complexity of our design in terms of its
resource utilization on the NetFPGA platform. We mea-
sure both logic and memory utilization and compare this
utilization to that of the NetFPGA reference router imple-
mentation. We evaluated both the reference implementa-
tion and our design on the Xilinx Virtex-II Pro 50, FPGA.
The reference design has a 32-entry TCAM longest prefix
match module with its lookup table, and a 32-entry ARP
table. The lookup module is implemented using SRL16e
while ARP CAM is implemented using dual port Block

RAM (BRAM) [6]. Our virtual router implementation, on
the other hand, uses a 32-entry CAM for the VMAC-VE
lookup table that is based on BRAM. There are a total of
eight TCAMs with their lookup tables, and eight ARP ta-
bles, each with 32 entries. We aim for small lookup tables,
each with the same capacity as our physical router design.
We measured our results using Xilinx ISE 9.2i and show

our results as the total resource utilization of FPGA. Our
current implementation does not include any modification to
the routers’ transmit or receive queues, but we believe that
providing fine-grained control for virtual routers, requires
modification to these queues; we discuss these modifications
in Section 6.

LUT and BRAM Utilization The base router implementa-
tion requires a total of 23,330 four-input LUTs, which con-
sume about 45% of the available logic on the NetFPGA.
The implementation also requires 123 BRAM units, which
is 53% of available BRAM.
The virtual router implementation uses 32,740 four-input

LUTs , which accounts for approximately 69% of LUTs, be-
ing used for logic implementation. Of this 69%, approx-
imately 13% of LUTs are used for shift registers. Route
through is responsible for 4.5%, with a total of 73% of LUTs
that are being utilized in current design. This implementa-
tion uses 202 BlockRAMs, or 87% of available BRAM.

Gate count Another measure of complexity is equivalence
to total number of logic gates, based on estimates from Xil-
inx tools. Although we do not have any numbers about gate
count usage of commercial routers, we are not aware of any
open-source router implementation other then NetFPGA-
based reference router implementation, so we can only com-
pare virtual router implementation with NetFPGA group’s
router implementation.
The current NetFPGA router design provides line rate

forwarding and has one IPv4 router implemented; this im-
plementation is equivalent to about 8.6 million gates. In
contrast, our virtual router implementation, which provides
line rate forwarding and can have up to eight IPv4 virtual
routers to a total of 14.1 million logic gates, considerably
less than the total equivalent gate cost for eight physical
routers. (Based on statistics reported by Xilinx ISE 9.2, the
gate cost for eight physical routers will be around 70 million
logic gates, assuming the NetFPGA-based design.) Such an
implementation may provide more bandwidth, but will also
require more power. In summary, our virtual router design
provides eight virtual routers at approximately 21% to 25%
of the gate cost of today’s cutting edge router technology,
with correspondingly less power usage.

6. Limitations and Future Work

In this section, we discuss several limitations and possi-
ble extensions to the current implementation. Some of these
limitations result from the need for virtual routers to behave
like a physical router so that they can be managed separately
by individual users. Some limitations arise from the need to
provide flexibility in virtual networks. We are extending the
current design to address these limitations.

7

First, providing individual router users with statistics
about their networks would help with various accounting
tasks. The virtual data plane we have presented could be
extended to collect statistics about traffic in each virtual net-
work. Second, the current implementation can support only
small forwarding tables, as it uses BRAM for table storage.
This design can be improved by storing forwarding tables
in SRAM to make this design capable of supporting large
forwarding tables. Third, virtual routers should allow users
to update the forwarding tables without interrupting packet
forwarding. Our current implementation lacks this feature:
when one user tries to update the forwarding table, the oth-
ers are blocked. Allowing concurrent packet forwarding and
forwarding-table updates also requires a different register-
set interface for each virtual router.
Finally, each virtual router should operate independently

of other virtual routers on the device. As shown in Section 5
the current design meets the fast forwarding path and scal-
ability requirements and provides isolation to the CPU run-
ning on the host machine of the NetFPGA card. However,
the current implementation does not isolate the traffic be-
tween different virtual networks: in the current implemen-
tation, all virtual networks share the same physical queue
for a particular physical interface, so traffic in one virtual
network can interfere with the performance observed by a
different virtual network. In the ideal case, no traffic in one
virtual network should affect other’s bandwidth. In our on-
going work, we are designing various techniques to provide
isolation, while still making efficient use of the relatively
limited available resources.

7. Conclusion

Sharing the same physical substrate among a number of
different virtual networks amortizes the cost of the physical
network; as such, virtualization is promising for many net-
worked applications and services. To date, however, virtual
networks typically provide only software-based support for
packet forwarding, which results in both poor performance
and isolation. The advent of programmable network hard-
ware has made it possible to achieve improved isolation and
packet forwarding rates for virtual networks; the challenge,
however, is designing a hardware platform that permits shar-
ing of common hardware functions across virtual routers
without compromising performance or isolation.
As a first step towards this goal, this paper has presented

a design for a fast, virtualized data plane based on pro-
grammable network hardware. Our current implementation
achieves the isolation and performance of native hardware
forwarding and shares hardware modules that are common
across virtual routers, which achieves up to 75% savings in
the overall amount of logic that is required to implement in-
dependent physical routers. Although many more functions
can ultimately be added to such a hardware substrate (e.g.,
enforcing per-virtual router resource constraints), we believe
our design represents an important first step towards the ul-
timate goal of supporting a fast, programmable, and scalable
hardware-based data plane for virtual networks.

Acknowledgments

This work was funded by NSF CAREER Award CNS-
0643974 and NSF Award CNS-0626950. We thank Ramki
Gummadi, Eric Keller, and Murtaza Motiwala for helpful
feedback and suggestions.

REFERENCES
[1] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,

D. Moon, and S. Shenker. Accountable Internet Protocol (AIP). In
Proc. ACM SIGCOMM, Seattle, WA, Aug. 2008.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the Art of
Virtualization. In Proc. 19th ACM Symposium on Operating Systems

Principles (SOSP), Lake George, NY, Oct. 2003.

[3] A. Bavier, M. Bowman, D. Culler, B. Chun, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating
System Support for Planetary-Scale Network Services. In Proc. First

Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco, CA, Mar. 2004.

[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In
VINI Veritas: Realistic and Controlled Network Experimentation. In
Proc. ACM SIGCOMM, Pisa, Italy, Aug. 2006.

[5] S. Bhatia, M. Motiwala, W. Muhlbauer, Y. Mundada, V. Valancius,
A. Bavior, N. Feamster, L. Peterson, and J. Rexford. Trellis: A
Platform for Building Flexible, Fast Virtual Networks on Commodity
Hardware. In 3rd International Workshop on Real Overlays &

Distributed Systems, Oct. 2008.

[6] J. Brelet and L. Gopalakrishnan. Using Virtex-II Block RAM for
High Performance Read/Write CAMs.
http://www.xilinx.com/support/documentation/

application_notes/xapp260.pdf.

[7] Cisco Multi-Topology Routing.
http://www.cisco.com/en/US/products/ps6922/

products_feature_guide09186a00807c64b8.html.

[8] Emulab. http://www.emulab.net/, 2006.

[9] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID
Separation Protocol (LISP). RFC DRAFT-12, Internet Engineering
Task Force, Mar. 2009.

[10] N. Feamster, L. Gao, and J. Rexford. How to lease the Internet in
your spare time. ACM Computer Communications Review,
37(1):61–64, 2007.

[11] Intel IXP 2xxx Network Processors. http://www.intel.com/
design/network/products/npfamily/ixp2xxx.htm.

[12] JunOS Manual: Configuring Virtual Routers.
http://www.juniper.net/techpubs/software/erx/

junose72/swconfig-system-basics/html/

virtual-router-config5.html.

[13] J. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo. NetFPGA–An Open Platform for
Gigabit-Rate Network Switching and Routing. In IEEE International

Conference on Microelectronic Systems Education, pages 160–161.
IEEE Computer Society Washington, DC, USA, 2007.

[14] Juniper Networks: Intelligent Logical Router Service.
http://www.juniper.net/solutions/literature/

white_papers/200097.pdf.

[15] R. Moskowitz and P. Nikander. Host identity protocol (hip)
architecture. RFC 4423, Internet Engineering Task Force, May 2006.

[16] OpenVZ: Server Virtualization Open Source Project.
http://www.openvz.org.

[17] J. Turner, P. Crowley, J. DeHart, A. Freestone, B. Heller, F. Kuhns,
S. Kumar, J. Lockwood, J. Lu, M. Wilson, et al. Supercharging
PlanetLab: A High Performance, Multi-application, Overlay
Network Platform. In Proc. ACM SIGCOMM, Kyoto, Japan, Aug.
2007.

[18] G. Watson, N. McKeown, and M. Casado. NetFPGA: A Tool for
Network Research and Education. In 2nd workshop on Architectural

Research using FPGA Platforms (WARFP), 2006.

8

