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ABSTRACT
Binary tomography—the process of identifying faulty net-
work links through coordinated end-to-end probes—is a
promising method for detecting failures that the network
does not automatically mask (e.g., network “blackholes”).
Because tomography is sensitive to the quality of the input,
however, näıve end-to-end measurements can introduce in-
accuracies. This paper develops two methods for generating
inputs to binary tomography algorithms that improve their
inference speed and accuracy. Failure confirmation is a per-
path probing technique to distinguish packet losses caused
by congestion from persistent link or node failures. Aggrega-

tion strategies combine path measurements from unsynchro-
nized monitors into a set of consistent observations. When
used in conjunction with existing binary tomography algo-
rithms, our methods identify all failures that are longer than
two measurement cycles, while inducing relatively few false
alarms. In two wide-area networks, our techniques decrease
the number of alarms by as much as two orders of magni-
tude. Compared to the state of the art in binary tomogra-
phy, our techniques increase the identification rate and avoid
hundreds of false alarms.

Categories and Subject Descriptors
C.2.3 [Computer Systems Organization]: Computer
Communication Networks—Network Monitoring

General Terms
Design, Experimentation, Measurement

Keywords
Network Tomography, Troubleshooting, Diagnosis

1. INTRODUCTION
Binary tomography refers to the process of detecting and

identifying link failures by sending coordinated end-to-end
probes [10]. This technique offers great hope for network
administrators to diagnose failures that are not possible to
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Figure 1: Example of binary tomography.

detect with existing network alarms. One such class of fail-
ures is network “blackholes”, or failures that network devices
and protocols cannot automatically mask. Blackholes may
be caused by router software bugs [7], errors in the interac-
tion between multiple routing layers [11], or router miscon-
figurations [12,17]. In many cases, end-to-end packet loss or
outright loss of reachability may be the only indication that
a link or node has failed [16]. Even if a customer notices a
failure, operators may not be able to determine its location;
moreover, operators would prefer to detect failures before
customers complain.

Fig. 1 shows an example of applying binary tomography to
fault diagnosis. Monitors periodically probe destinations. A
coordinator combines the results of probes from all monitors
and runs a tomography algorithm. The goal is that when
a link fails, a unique set of end-to-end paths from monitors
to destinations experiences the failure. Binary tomography
algorithms then use the set of paths that experience end-to-
end losses to identify the failed link.

Despite its promise, binary tomography algorithms are
difficult to apply directly in real networks [14]. Binary to-
mography has been explored extensively in theory, simu-
lations, and offline analysis [9, 10, 16, 22]. Unfortunately,
our experimental results show that applying tomography al-
gorithms to measurements collected from deployed network
monitoring systems leads to a large number of alarms, many
of which do not correspond to failed links (false alarms). For
instance, the näıve application of tomography in our mea-
surements from PlanetLab would trigger almost one alarm
per minute; in our measurements from an enterprise net-
work, these algorithms would raise one alarm every three
minutes. Such alarm rates are much too high to ever be
useful in practice.



False alarms arise because the inputs to the tomography
algorithm are inaccurate. Binary tomography takes as input
the network topology and a set of end-to-end measurements
(formalized as a reachability matrix, which indicates whether
each path is up or down). Building accurate network topolo-
gies has already received considerable attention [23,27]. Be-
cause an inconsistent reachability matrix will often lead to
false alarms, this paper focuses on building consistent reach-
ability matrices. In the example in Fig. 1, suppose that
link 4 is working, but that the reachability matrix views the
path between A and C as up and B and C as down; binary
tomography would raise a false alarm with link 4 as down.

These inconsistencies arise for two reasons: (1) detection

errors: when there is no failure, but the path from B to
C was mistakenly detected as down; and (2) lack of syn-

chronization: link 2 failed, but when A probed C the link
was still up. Type 1 errors occur because packet losses are
often bursty, and hence monitors can easily misinterpret a
transient but bursty loss incident as a persistent blackhole.
Type 2 errors arise because it is practically impossible to
guarantee that probes issued by different monitors to differ-
ent destinations will cross a link at the same time. Early
tomography algorithms [6] assumed multicast probes from a
single monitor to achieve synchronization, but multicast is
not widely deployed yet.

This paper develops measurement methods that address
both types of errors to build accurate reachability matrices
to help existing tomography algorithms quickly detect and
locate persistent failures while raising as few false alarms as
possible. We evaluate these methods with analytical mod-
eling, controlled experiments, and wide-area measurements.
We make the following two contributions:

1. A probing method for quickly distinguishing
persistent path failures from transient conges-
tion. In Sec. 2, we design and evaluate a probing strat-
egy for failure confirmation that distinguishes persis-
tent path failures from transient packet losses. We
show that periodic probing minimizes detection errors
(i.e., errors of Type 1). We are able to compute the
optimal number of probes and interval between probes
for achieving a target detection-error rate with mini-
mal overhead.

2. Strategies for aggregating path failures into a
consistent reachability matrix. In Sec. 3, we
develop and validate aggregation strategies to reduce
Type 2 errors. These strategies introduce a delay to
verify that measurements are stable before producing
inputs for binary tomography. Our analytical and ex-
perimental results show that aggregation strategies are
essential to address the impossibility to synchronize
measurements.

We apply these confirmation and aggregation methods to
evaluate how they can improve the accuracy of existing bi-
nary tomography methods. In Sec. 4, we show with con-
trolled experiments that applying our techniques to existing
tomography algorithms can quickly and accurately identify
all persistent failures with few false alarms. Applying these
techniques to end-to-end probes from PlanetLab and an en-
terprise network reduces the number of alarms by two orders
of magnitude. Controlled experiments also show that our
techniques identify more persistent failures than the state-
of-the-art approach [16], and avoid hundreds of false alarms.

2. DETECTING PATH FAILURES
A lost probe might indicate a persistent failure, but it

can also indicate a transient loss due to congestion, routing
convergence, or overload at hosts. Assuming that every lost
probe indicates a failure could lead to many false alarms—
cases where the tomography algorithm claims that a link has
failed when it has not. In this section, we develop a probing
method to distinguish persistent failures from congestion-
based transient losses. We refer to this method as failure

confirmation. We are not interested in measuring loss rates;
rather, making a binary decision allows us to develop mech-
anisms with lower probing overhead and delay than mech-
anisms that measure loss rates [25]. Although one of our
motivations is to diagnose blackholes, our techniques detect
a broader class of failures that includes blackholes as well as
other types of failures that could be detected in other ways.

We aim to detect failures as quickly as possible while re-
ducing the overall number of detection errors—cases where
we misclassify a transient loss as a failure. Additional prob-
ing can reduce detection errors at the cost of increasing the
time to detect a failure (perhaps by as much as tens of sec-
onds, depending on the overall probing rate). The rest of
this section examines the probing process, rate, and num-
ber of probes that allows for fast detection and low overall
detection-error rate for the types of losses that occur on In-
ternet paths.

2.1 Confirmation Method
When a monitor observes a single lost probe along a path,

it sends additional failure confirmation probes to determine
whether lost packets are caused by a failure. The goal of fail-
ure confirmation is to determine whether the path has failed
or is simply experiencing transient packet loss. A confirmed

failure happens when all confirmation probes are lost.
We model path losses using the Gilbert model [13], an ac-

curate model for capturing burstiness of congestion-based
losses observed on Internet paths [29]. In a Gilbert model,
paths are either in a good state, where all transmissions
are successful; or in a bad state, where all packets are lost.
This model has two parameters: the probability to transi-
tion from the bad to the good state and the probability to
transition from good to bad.

Detection errors are unavoidable in real deployments, and
we would need to send an infinite number of confirmation
probes to achieve perfect detection. Our objective is to
make the detection-error rate, F , as small as possible while
still keeping detection time low. We define κ as the number
of confirmation probes and T as the time to run failure con-
firmation. In this loss model, we denote the average length
of loss bursts by b and the average loss rate on the path by
r. Tab. 1 summarizes the notation used in the paper.

We first show that a periodic probing process minimizes
F , given a fixed κ and T . The second part of our analysis as-
sumes periodic probing and takes as input a target F . When
the number of probes, κ, is too large, probes will interfere
with the network (perhaps inducing additional losses); when
κ is too small, detection errors increase. The objective is to
find values of κ and T that achieve the target F .

2.1.1 Probing process
We show that a periodic probing process minimizes the

detection-error rate, F , given κ and T . Minimizing detection
errors is equivalent to minimizing the probability that all



confirmation probes fall within loss bursts. In the Gilbert
model [13], the probability of losing a confirmation probe at
time ti given that a probe was lost at time ti−1 is:

Pr( loss(ti) | loss(ti−1) ) = r + (1 − r)e−µi/b,

where µi = ti−ti−1 is the time interval between probe i and
i−1. Thus, given κ confirmation probes, we can express the
detection-error rate as:

F =
Y

1≤i<κ

r + (1 − r)e−µi/b. (1)

We can then find the intervals between probes,
µ1, · · · , µκ−1, that minimize F by solving an optimization
problem constrained by the total time available to run con-
firmation, i.e.,

P

κ µi < T . The optimal solution for this
optimization occurs when all µi are equal. One way to prove
this result is by showing that if there exists µi > µj , then
decreasing µi by δ and increasing µj by δ decreases the value
of F . Thus, equally-spaced probes are the best strategy to
minimize detection errors. Bolot et al. [5] have proved a
similar result in the context of FEC for VoIP.

Although sending periodic probes minimizes the detec-
tion-error rate if losses follow a Gilbert model, this method
performs poorly in the unlikely case of periodic losses. To
avoid the possibility of phase locking, i.e., losing all confir-
mation probes in periodic loss episodes if µ is a multiple
of the loss period, we use the method suggested by Bac-
celli et al. [1], where probe inter-arrival times are uniformly
distributed between [(1 − γ)µ, (1 + γ)µ], with 0 ≤ γ < 1.

We extend Eq. (1) to consider these uniform inter-arrival
times by calculating F as a function of γ:

F =

»

r + (1 − r)e−µ/b b

2γµ

“

eγµ/b − e−γµ/b
”

–κ

. (2)

Eq. (2) is an extended Eq. (1) with an extra term that is
larger than one and increases with γ, capturing the increased
probability of two confirmation probes falling in the same
loss burst if their inter-arrival time is less than µ.

Proofs and detailed explanation of the results in this sub-
section are available in an extended version of this paper [8].

2.1.2 Number of probes and rate
We now discuss how to set κ and T to achieve a target

F assuming confirmation probes have inter-arrival times be-
tween [(1−γ)µ, (1+γ)µ]. We can express T as κ×µ, where
µ is the average interval between probes. We formulate two
optimization problems for selecting κ and µ:

Minimizing time. The first optimization model minimizes
the total time T it takes to run the confirmation scheme, sub-
ject to the target F (constraint a) and a maximum probing
rate of 1/µmin packets per second (constraint b):

min κ × µ (3)

s.t. κ × ln
`

r + (1 − r)e−µ/bf(µ)
´

< ln(F ) (a)

µ > µmin (b)

where f(µ) = b(eγµ/b − e−γµ/b)/2γµ. The intuitive solution
to this optimization problem is to send probes often (i.e.,
µ is close to µmin) and increase the number of confirmation
probes until F is achieved.

Minimizing probes. The second optimization model min-
imizes the total number of confirmation probes needed to

Var. Description

Confirmation Scheme

κ Number of confirmation probes
µ Average interval between confirmation probes
µmin Minimum interval between conf. probes
γ Varies interval between conf. probes in (1 ± γ)µ
F Target detection-error rate
T Total time running confirmation (κ × µ)
r Average packet loss rate
b Average length of loss bursts
Aggregation Strategies

C Measurement cycle duration
P Set of monitored paths
Hℓ Hitting set (paths going through link ℓ)
H Average hitting set size
f Failure length
n Number of cycles in aggregation
N Average number of paths in Hℓ probed in a cycle
w Average number of detection errors in a cycle
q Fraction of matrices built due to detection errors
tde Time to detect a failure

Table 1: Notation.

achieve F . Assuming independent losses, we can drop the
second term of Eq. (2) and express the probability of detec-
tion errors as F = rκ. We can then compute the number of
confirmation probes and inter-probe spacing with:

κ = ⌈ln(F )/ ln(r)⌉, and (4)

min µ

s.t. κ × ln
`

r + (1 − r)e−µ/bf(µ)
´

< ln(F ) (a)

µ > µmin (b)

where f(µ) = b(eγµ/b−e−γµ/b)/2γµ. This µ is usually much
higher than µmin because it must support the assumption of
independent losses.

Any other combination of κ and µ achieving F would be
an intermediate solution between these two extremes. For
the rest of this paper, we use the approach in Eq. (4) to set
the parameters of κ and µ.

2.1.3 Deriving parameters in practice
Computing κ and µ requires five parameters. The op-

erator selects the desired target detection-error rate (F ),
the minimum probing interval (µmin), and the variability in
probe inter-arrival times (γ). The path loss rate (r) and
average burst length (b) are properties of the paths.

Estimating path loss rate and burst length. Path
packet loss rate can be measured with a plethora of tools
ranging from router-based measurements [3, 21], to active
probing [25, 26], to passive monitoring of application traf-
fic [20]. One can use the technique proposed by Sommers
et al. [25] from the set of monitors to estimate the values
of r and b. Given that these values will vary over time,
we suggest that operational deployments perform multiple
measurements and pick a value slightly above the maximum
loss rate and loss burst values. Overestimated values of r
and b make confirmation more robust to estimation errors.

Selecting target detection-error rate, minimum
probing rate, and inter-arrival time variability. The
target detection-error rate, F , should be small to allow to-



mography algorithms to operate on relatively accurate es-
timates of path failures. However, choosing F too small
increases κ, thereby increasing delay, and reducing F gives
diminishing returns (as we see in Sec. 2.2.2). In this paper,
we select F experimentally.

The value of µmin should be set so that the probes are not
intrusive; previous work has shown that bursts as short as
10 packets can affect router queues during loss periods [25].
One way to mitigate this effect is to limit the number of con-
firmation probes queued at routers to a very small number.
Current router configurations use 180 ms of buffer [4]; as an
example, we can set µmin = 100 ms to limit the maximum
number of confirmation packets in router queues to two.

The variability of inter-arrival times should be large
enough to avoid phase locking between probes and peri-
odic losses. In the worst-case scenario where the loss period
equals µ, choosing γ = xr implies that the probability of
sending a probe in a loss episode is less than 1/2x. Thus,
small values of γ are enough to avoid phase locking, result-
ing in limited impact on F . In the rest of this paper, we use
γ = 0.1, which is applicable to a wide range of loss rates [1].

2.2 Evaluation
We evaluate our probing method in a controlled envi-

ronment using Emulab and in wide-area experiments using
PlanetLab. Controlled experiments allow us to measure the
accuracy of our technique, because we have ground truth.
On the other hand, wide-area experiments allow us to test
our method under actual loss scenarios.

2.2.1 Controlled experiments
Because Emulab can only introduce random losses, we de-

ployed a modified version of the Linux Netem module that
allows us to inject random (i.e., Poisson), bursty (i.e., up to
three-state Gilbert models), and periodic losses on links. In
this section, we use Fast Ethernet links between nodes, with
packet losses occurring in both directions independently. We
used the Abilene OSPF topology and varied emulated link
latencies from zero (i.e., only native OS and hardware de-
lays) to 20 ms, with quantitatively similar results. We add
background traffic of 500 packets per second in each direc-
tion to trigger state changes in the Gilbert model when emu-
lating bursty losses. To study our confirmation scheme with
different configurations, we also varied the values of κ and
µ. We set F = 10−5, as this value represents a good trade-
off for a wide range of path loss rates, and µmin to 100 ms,
which guarantees that at most two confirmation probes are
simultaneously queued at routers [4].

We investigated how detection errors vary as a function of
path loss rates and burst lengths. To cover a large portion
of previously reported loss rates [20, 21, 25, 26], we varied
path loss rates between 0.01% and 1% and average burst
lengths from 4 ms to 40 ms. We used synthetic and real ISP
topologies and found qualitatively similar results.

Detection-error rates with different loss rates. In our
experiments, detection errors increase when r increases and
κ is kept constant. Our proposed scheme varies κ between
two and five to achieve the target F = 10−5, depending
on the path loss rate. Spacing probes significantly reduces
detection errors compared to sending back-to-back probes.
If probes are sufficiently spaced, detection errors decrease
with diminishing returns when r is constant and κ increases,
as expected from Eq. (2).
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Figure 2: Burst length vs detection errors—Emulab.

Detection-error rates with different burst lengths.
Fig. 2 shows the detection-error rate when varying the av-
erage burst length in the Abilene topology for fixed per-link
loss rates of 0.1%. Results for other loss rates are quali-
tatively similar. For κ ≥ 2, we show results for back-to-
back probes and probes spaced by 200 ms. For back-to-back
probes, the detection-error rate increases with the burst
length, as the probability of confirmation packets falling in
the same loss burst increases. Results for µ = 200 ms are
independent of the burst length (i.e., a straight line) for
b ≤ 20 ms because the probability of a loss burst lasting
more than 200 ms in these cases is close to zero. However,
when b = 40 ms, the probability of a burst lasting more
than 200 ms is higher and the detection-error rate increases.
Sending two spaced confirmation probes is better than send-
ing many back-to-back ones. Finally, the proposed scheme
is the only one that achieves the target detection-error rate
of 10−5 for all burst lengths, by setting κ = 4 and varying
µ between 100 ms and 398 ms. When bursts are long, µ
is increased to avoid sending probes during the same loss
burst. When bursts are short, µ is equal to µmin to reduce
total confirmation time. When b = 4 ms, the total confir-
mation time (T = κ× µ) of the proposed scheme is 400 ms,
which is half the confirmation time when using κ = 4 and
µ = 200 ms (i.e., squares with solid line in Fig. 2).

Detection-error rates with other loss models. We
evaluated the effect of applying our method to losses given
by a more general three-state Gilbert model, capable of cap-
turing loss processes where the probability of losing a single
packet is different from having a loss burst. We found that
the increase in F is less than one order of magnitude even if
the fraction of single packet losses (i.e., no burst) is as high
as 90%, a scenario where the two-state model is very inac-
curate. We also ran experiments with periodic losses and
saw that varying packet inter-arrivals with γ > r is enough
to prevent phase locking. We present a more detailed dis-
cussion in an extended version of this paper [8].

Summary. These experiments show that our probing
scheme adapts the value of κ and µ to path loss rates and
burst lengths to successfully achieve a target detection-error
rate while minimizing total confirmation time. The method
is also robust to different loss processes.

2.2.2 Wide-area Internet experiments
We aim to determine whether failure confirmation is use-

ful in practical scenarios. Our deployment in an enterprise
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Figure 3: Efficacy of confirmation in PlanetLab.

network resulted in only a few iterations of the confirmation
method, because this network is fairly stable and we only
ran the experiment for two weeks. We then used a larger
deployment with 200 PlanetLab nodes, each of which probed
the other nodes periodically. PlanetLab nodes are frequently
overloaded and induce short bursts of packet loss [24]. Al-
though we cannot differentiate host- and network-induced
packet loss (a situation that can happen in any real deploy-
ment), PlanetLab’s dynamic environment is very demanding
of confirmation methods and worth investigating.

We compared the relative performance of two confirma-
tion schemes run during the same time period, so that they
will experience similar node conditions. The first scheme
sends confirmation probes back-to-back, while the second
sends confirmation probes spaced by 200 ms. If back-to-
back probes confirm a failure, but spaced probes do not,
we know that the first has raised a detection error. We
pick µ = 200 ms based on the observation that incidence of
bursty packet loss usually lasts less than 100 ms [18,21,25].
We also used confirmation probes spaced by 2 seconds and
found similar results.

Figure 3 shows the cumulative distribution of the fraction
of confirmed failures for each PlanetLab node, for different
numbers of confirmation probes, and for different probing
strategies. We compute the fraction of confirmed failures by
dividing the number of confirmed failures by the total num-
ber of lost probes at each node. We see that increasing κ
reduces the number of confirmed failures (i.e., detection er-
rors). The two rightmost lines show the fraction of confirmed
failures when κ = 1. A larger κ shows that sending probes
with delay in between each probe confirms significantly fewer
failures than the one using back-to-back probes. We also see
diminishing returns as in the controlled experiments. When
probes are spaced, increasing κ from five to ten decreases
detection errors by (1.3%) less than increasing κ from three
to five (1.8%). Using more than ten confirmation probes
yields minimal improvement. When using five confirmation
probes, spacing probes confirms 38% less failures than us-
ing back-to-back probes (i.e., the difference between the two
curves for κ = 5). All failures in these 38% are detection
errors, indicating that using the proposed scheme can sig-
nificantly improve the quality of measurements to be used
by tomography algorithms.

3. AGGREGATING FAILURES
This section develops aggregation methods for combining

path measurements into a reachability matrix (Step 3 in

Fig. 1). The main challenge with aggregation is construct-
ing a reachability matrix where the end-to-end path mea-
surements have a consistent view of the status of the links
in the network. An inconsistent reachability matrix could
introduce false alarms or wrong identification of failures. Ex-
isting work on binary tomography algorithms presumes that
the reachability matrix is consistent; in practice, however,
consistency is difficult to achieve. This section explains the
challenges in achieving consistency, proposes strategies for
constructing a consistent reachability matrix, analyzes their
delay, and evaluates them both analytically and empirically.

3.1 Definitions
We define a reachability matrix as a matrix, M , where

each entry Mmd is the binary status (i.e., up or down) of
the path from monitor m to destination d. Note that the
matrix may be incomplete, since not all monitors will moni-
tor all destinations. We define aggregation as the process of
combining path status measurements from the monitors to
construct this reachability matrix. Suppose that some set of
monitored paths cross a particular link in the network. In-
formally, consistency says that if a particular link is “down”
then all paths that cross that link should have status“down”,
and that if all links in a path are “up” then that path should
have status “up”. We now formalize this notion.

Let Pm denote the set of paths probed by a monitor m
and P = ∪∀mPm the set of paths from all monitors. We
define the hitting set of a link ℓ, Hℓ, as the set of paths that
traverse ℓ.1 We say that a reachability matrix is consistent

at an instant in time if, for every ℓ that is failed, all paths
in Hℓ have a status of down and all paths that contain only
working links have a status of up in the reachability matrix.

3.2 Challenges in Achieving Consistency
Binary tomography algorithms take as input a consistent

reachability matrix; unfortunately, two factors make it diffi-
cult to construct a consistent reachability matrix in practice:

Lack of synchronized measurements. Because moni-
tors probe at different times, different monitors may observe
different characteristics for the same link, thus creating in-
consistencies in the reachability matrix.

Our goal is to design an aggregation strategy that builds a
consistent reachability matrix with small aggregation delay.
If monitors could probe all paths in P simultaneously, then
the resulting reachability matrix would be consistent. Many
tomography algorithms [2, 9, 30] assume consistent inputs.
Unfortunately, synchronous measurements are impossible in
practice. First, measurements from a single monitor are
not instantaneous, because probing many destinations takes
time (in our experiments, this process takes from tens of sec-
onds to minutes). Second, each monitor probes a different
set of paths, so it is impossible to guarantee that two moni-
tors probe the same link simultaneously. Monitors have dif-
ferent cycle lengths as each monitor probes a different set of
destinations, and machines have different processing power
and available bandwidth. The overall cycle length, C, is the
time it takes the slowest monitor to probe all its paths; as we
will see in Sec. 3.4, the overall aggregation delay is a function
of both the cycle length and the aggregation strategy.

Detection errors. Detection errors from failure confirma-

1For simplicity, we refer to the hitting set of a link, but this
definition also applies for sets of links.



tion (Sec. 2) may create situations where a path is considered
to have failed when it has not. These errors in the reachabil-
ity matrix may also cause a tomography algorithm to reach
incorrect conclusions about which links have failed. In this
section, we use F to denote the actual detection-error rate of
failure confirmation, which may be different from the target

detection-error rate of Sec. 2.

3.3 Aggregation Strategies
We propose and evaluate three strategies for aggregating

path measurements into a reachability matrix. The first
method is simple and fast, but it can build inconsistent ma-
trices if failures are short or if there are detection errors
(basic, Sec. 3.3.1). We then consider two enhancements
that wait longer to build matrices but achieve higher consis-
tency: a conservative one (mc, Sec. 3.3.2) and another that
is more tolerant to detection errors (mc-path, Sec. 3.3.3).
We present models that capture how detection errors and
unsynchronized measurements may introduce inconsistency.

3.3.1 Basic approach
The basic aggregation strategy works as follows. First,

detect that a path status changed from up to down. Then,
wait a full cycle C for monitors to probe all paths in P .
Finally, build a reachability matrix by combining the path
statuses reported in the latest measurement cycle. This sim-
ple strategy assumes that if ℓ fails, all paths in Hℓ will be
confirmed as down after C.

Consistency analysis. The consistency of basic depends
on the duration of the failure, f , relative to the cycle length,
C. We analyze consistency in three scenarios. We first as-
sume that failure confirmation gives no detection errors, and
relax this assumption later.

Scenario 1 (long failures): f > 2C. In S1, monitors
probe all paths in Hℓ while ℓ is down; hence, the coordinator
always builds a consistent reachability matrix. The average
consistency in this scenario is 1.

Scenario 2 (intermediate failures): C ≤ f ≤ 2C. In S2,
all paths in Hℓ will be down during a full cycle because the
failure is longer than C. When the coordinator builds the
reachability matrix, however, ℓ may have recovered. In this
case, the matrix is consistent with ℓ’s failure, but the failure
no longer persists. We call these instances late identifica-

tions. We consider these cases consistent, but it is simple to
extend the analysis to consider late identification as incon-
sistent, but we omit this analysis for conciseness.

Scenario 3 (short failures): f < C. In S3, the coordi-
nator may build an inconsistent reachability matrix because
monitors may probe some paths in Hℓ while ℓ is down and
others when it is up. Let F be the set of all possible failures
and H =

P

ℓ∈F |Hℓ|/|F| be the average hitting set size. We
identify two cases:

1. Late identification: The probability of probing all
paths in Hℓ while ℓ is failed and getting a consistent
reachability matrix is approximately p = (f/C)H .

2. Inconsistent reachability matrix: In all other cases, the
reachability matrix will be inconsistent. The consis-
tency of the reachability matrix in these cases depends
on the number of paths in Hℓ that were probed during
f . Given that the reachability matrix is inconsistent,

at least one path has to probe ℓ during f (i.e., the
path that detected the failure) and at most Hℓ − 1
can probe ℓ during f (otherwise, the matrix would be
consistent). Hence, we can approximate the average
number of paths in Hℓ, for all ℓ ∈ F , probed during
a failure by N = 1 + (f/C) × (H − 2). The average
consistency in these cases is 1 − N/|P|.

Combining these three scenarios, the expected consistency
of basic when there are no detection errors is:

E[consbasic] =

(

1 if f ≥ C,

p + (1 − p)
“

1 − N
|P|

”

if f < C.
(5)

Detection errors reduce consistency. We derive an upper
bound for the consistency of basic when there are detection
errors as follows:

E[consbasic, de] < q
“

1 −
w

|P|

”

+ (1 − q)E[consbasic]. (6)

The first term on the right-hand side accounts for matrices
constructed due to detection errors only (i.e., not related to
any failures), and q is the fraction of such matrices. Their
average consistency is 1 − w

|P|
, where w = 1 + F (|P| − 1)

is the average number of paths with wrong status in cycles
where detection errors occur. The second term corresponds
to matrices built due to real failures. Their average consis-
tency is E[consbasic] if there are no detection errors. If there
are detection errors during aggregation of real failures, con-
sistency will be lower than E[consbasic], which is why the
equation is an upper bound.

Unfortunately, basic may produce incorrect answers due
to either lack of synchronization if f < C or detection errors.
Thus, we also considered other aggregation strategies that
run in one measurement cycle: (1) building the reachability
matrix every C seconds, (2) waiting a window of time with-
out path status changes to build the reachability matrix [14],
and (3) continuously updating the reachability matrix as
monitors report new measurements. All of these techniques
create inconsistent matrices if f < C or if detection errors
occur. In the next two sections, we describe improvements
to consistency in the face of these two challenges.

3.3.2 Coping with lack of synchronization
Multi-cycle aggregation strategies improve consistency by

using extra time to gather more measurements and build a
more stable reachability matrix. Similar to basic aggrega-
tion, the multi-cycle (mc) strategy starts aggregation upon a
path status change. Instead of building the reachability ma-
trix after one measurement cycle, mc waits for n cycles with
identical measurements to build the reachability matrix. mc

avoids building reachability matrices when measurements
are not stable and achieves the highest consistency of the
three approaches, as we show below.

Consistency analysis. Suppose that there are no detec-
tion errors. There are four scenarios: (1) When ℓ fails for
f > (n+1)×C, monitors obtain a stable status for Hℓ dur-
ing n cycles and mc builds a consistent matrix. (2) When
f < (n − 1) × C, monitors do not observe Hℓ as down
for n cycles and no matrix is built. (3) When ℓ fails for
n×C < f < (n + 1)×C, ℓ is down for n cycles, but it may
recover before mc builds the reachability matrix, thereby
leading to late identification (as in S2). (4) When ℓ fails for
(n−1)×C < f < n×C, monitors may probe some paths in



Hℓ in n cycles and others in n− 1 cycles. If monitors probe
all paths in Hℓ in n cycles, then there is a late identification.
Otherwise, measurements at the nth cycle are different from
the n− 1 previous cycles and no matrix is built. Putting all
cases together, mc always builds consistent matrices:

E[consmc] =

(

1 if f ≥ (n − 1) × C,

none if f < (n − 1) × C.
(7)

mc is robust to detection errors. To be aggregated, de-
tection errors must occur on the same set of paths for n
consecutive cycles. If there are frequent detection errors,
though, aggregation must wait until n consecutive matrices
are identical. This additional delay affects the number of
failures that mc can build a matrix for. Thus, mc is less
useful in the face of detection errors.

3.3.3 Coping with detection errors
We propose an extension to mc called multi-cycle noise-

tolerant (mc-path), which achieves lower consistency but
is more tolerant to detection errors. mc-path also waits n
cycles to build the reachability matrix. But, instead of re-
quiring the statuses of all paths in P to be identical, paths
that are down for n consecutive cycles are added as down
in the reachability matrix, while others are added as up. In
other words, only paths down in the last n cycles are aggre-
gated as down, while unstable paths are aggregated as up.

Consistency analysis. The consistency of mc-path is the
same as that of mc, except for failures where a link ℓ fails
for (n − 1) × C < f < n × C. In this case, monitors may
probe paths in Hℓ during n or n−1 cycles. Similarly to S3 of
basic, mc-path builds an inconsistent matrix with only the
paths that were down in n cycles. The average consistency
of mc-path when there are no detection errors is then:

E[conspath] =

8

>

<

>

:

none if f < (n − 1)C,

1 if f ≥ n × C,

p′ + (1 − p′)
“

1 − N′

|P|

”

otherwise.

(8)

where p′ = (f ′/C)H , N ′ = 1 + f ′

C
× (H − 2), and f ′ = f

mod C is the length of the failure in the nth cycle.
Detection errors are filtered on a per-path basis and do

not delay the aggregation of paths in Hℓ. When there are
detection errors, an upper bound on the consistency of mc-

path would be similar to Eq. (6). The average number of
paths with incorrect status, w, is 1 + F n(|P| − 1), and q is
much smaller because the probability of building a reacha-
bility matrix due to detection errors only is proportional to
F n instead of F . For mc-path, the first term of Eq. (6),
which represents inconsistency caused by detection errors,
approaches zero as n increases. Hence, we have:

lim
n→∞

E[conspath, de] = E[conspath]. (9)

3.4 Aggregation Delay
The aggregation delay of all aggregation strategies de-

pends on the time it takes to detect the failure, tde, the
cycle length, C, and the number of cycles aggregation waits
before building the matrix, n. Apart from mc, which can
take arbitrarily long to build matrices due to detection er-
rors, the average delay can be written as:

E[delay] = E[tde] + n × C, (10)

where n = 1 in basic. The detection time E[tde] is smaller
than C because all paths are probed in a cycle. Also, E[tde]
is minimized for periodic probing and decreases as Hℓ in-
creases. We present a model for E[tde] in an extended ver-
sion of this paper [8].

Eq. (8) implies that a system can build consistent matrices
for failures longer than n×C and Eq. (10) implies that these
failures are identified before (n + 1) × C. E.g., an operator
who wants to identify failures of a target duration ftarget

(e.g., 5 minutes), should configure the system such that:

(n + 1) × C < ftarget. (11)

Failure to satisfy this condition (e.g., very long cycles or
need for large n due to high detection-error rate) means that
identifications will be late and that tomography algorithms
will use inconsistent reachability matrices.

3.5 Validation
To validate our models of consistency for each approach

to aggregation, we perform controlled experiments in Emu-
lab. We also apply our aggregation techniques to measure-
ments collected on both the PlanetLab testbed and across a
geographically distributed enterprise network to check how
useful they are in practical scenarios.

3.5.1 Controlled experiments
We use the same Emulab setup as in Sec. 2.2. We assume

that any router in the topology can be a destination and
consider two different sets of monitors: (1) with only the
two farthest routers, at New York and Los Angeles; and
(2) with three central monitors at Houston, Chicago, and
Salt Lake City. Then, we select the set of paths to probe
per monitor, Pm, by using the monitor selection algorithm
proposed by Nguyen and Thiran [19]. This algorithm selects
the minimum number of paths that allow diagnosis of multi-
link failures.

To inject blackholes, we introduce single-link failures that
last for 30 seconds and vary the cycle length from 3 to 50 sec-
onds, which will span values of f/C from 0.6 to 10. We
also considered more realistic failures from IS-IS message
traces collected on Abilene and found qualitatively similar
results. We inject congestion-induced packet losses following
a Gilbert model. We vary the per-link loss rates between
zero and 1% and the burst factor between 4 and 40 ms.
These parameter settings correspond to the range of values
found by many previous studies in the wide-area [20,25,26].
We only show results for a 1% link loss rate and burst factor
of 40 ms, which are more severe than have been observed in
practice; results for other configurations are similar. As in
Sec. 2, we configure the failure confirmation scheme using
F = 10−5 and µmin = 100 ms. Solving Eq. (4) yields κ = 4
and µ = 398 ms.

Fig. 4 shows the average consistency of each aggregation
strategy as f/C varies. Points are the Emulab results and
lines are computed from the models in Sec. 3.3. Multi-cycle
strategies are running with n = 2, so failures need to persist
for at least two cycles to be included in the reachability ma-
trix. Fig. 4(a) has no detection errors and Fig. 4(b) has 0.6%
incorrect detections (we achieve this high detection-error
rate by using only one confirmation probe instead of four).

Although the average consistency is above 90% for all
strategies, even small differences in consistency can be sig-
nificant for tomography algorithms; as shown in Fig. 1, one
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Figure 4: Consistency of aggregation strategies.

path with incorrect status may trigger a false alarm. We
study the effect of aggregation strategies on tomography’s
accuracy in Sec. 4. High values of consistency occur because
the average hitting set size, H , is much smaller than the
total number of paths, |P|.

Model validation. Fig. 4 shows that our analytic models
of consistency accurately predict the results from the con-
trolled experiments. When there are no detection errors and
f ≥ 2C, all strategies have perfect consistency. mc has per-
fect consistency in all scenarios. basic builds inconsistent
matrices when f < C, which corresponds to S3. Similarly,
mc-path creates inconsistent matrices when 1 < f/C < 2
(recall that n = 2 in these experiments). We can explain
the shape of mc-path curve for 1 < f/C < 2 from Eq. (8).
When the failure ends at the beginning of the nth cycle (f
is just a little more than C), the probability of building a
consistent reachability matrix, p′, is small, but the number
of paths with wrong status, N ′, is also small; hence, con-
sistency is high. When f is almost 2C, p′ is high and the
majority of failures will have a consistent matrix. The aver-
age consistency is lowest for failures that end in the middle
of the nth cycle (f = 1.5×C), because the number of paths
with wrong status is significant and the probability of con-
structing a consistent matrix is moderate.

Coping with detection errors. Fig. 4(b) shows that
multi-cycle aggregation strategies help mitigate the effects
of detection errors. However, basic has low consistency be-
cause every detection error appears as a path down in the
reachability matrix, so consistency is low even when the fail-
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n
1 2 3 4 5

basic
Delay 2.51
Cons. 0.914

mc
Delay 15.2 19.0 19.7 22.4
Cons. 0.981 0.998 1 1

mc-path
Delay 6.92 10.0 13.0 16.0
Cons. 0.964 0.977 0.982 0.985

Table 2: Relationship between aggregation delay (in
seconds) and consistency, no confirmation.

ure persists for more than three cycles. The analytical bound
of basic converges to the actual average when f/C is large
because the value of q in Eq. (6) approaches one.

Multi-cycle strategies achieve high consistency even in dy-
namic environments where detection-error rates are high,
but these strategies take longer to build a reachability ma-
trix and fail to identify shorter failures. Fig. 5 plots the
fraction of the injected failures for which each aggregation
strategy builds a consistent reachability matrix when vary-
ing f/C. The fraction of identified failures for multi-cycle
strategies is low when f < 2C because these strategies can-
not obtain stable measurements, so they will not build a
reachability matrix, and thus cannot identify these failures.
basic, on the other hand, always builds a reachability ma-
trix for failures that last more than one cycle, but it also
builds many other inconsistent matrices (hence the low av-
erage consistency in Fig. 4(b)), which would trigger false
alarms. When there are many detection errors, mc misses
many failures by being too conservative. It can only build
consistent reachability matrices for 27% of the failures that
last two cycles. mc-path represents the best compromise
when there are detection errors, because it builds consis-
tent matrices for all failures that are longer than two cycles
(Fig. 5) while keeping the false alarms low (Fig. 4(b)).

Relationship between delay and consistency. Tab. 2
shows the tradeoff between aggregation delay and consis-
tency. We do not use confirmation to focus on delay and
consistency of aggregation alone. The basic strategy has the
lowest consistency but the shortest delay. Multi-cycle strate-
gies can increase delay to achieve higher consistency. mc

has the highest consistency, at the cost of the highest delay
and missing most of the failures (Fig. 5). Finally, mc-path

also improves consistency by adding delay. Its consistency is
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Figure 6: Dynamics of real networks.

lower than mc’s, but its delay increases linearly with n and
it is able to identify all failures longer than n × C (Fig. 5).

3.5.2 Wide-area experiments
We use measurements from PlanetLab and an enterprise

network to check whether networks are stable enough for
basic or mc to work and whether path failure events are
longer than the typical cycle length in such systems. We
do not evaluate consistency directly because we do not have
ground truth about failures. The PlanetLab measurements
are the same as in Sec. 2, and the enterprise network mea-
surements are collected from eight monitors at sites of the
enterprise network across 5 different countries.

Fig. 6(a) shows the complementary cumulative distribu-
tion function of the percentage of paths that change status
during one measurement cycle. In PlanetLab, cycles last 60
seconds and at least one out of the 39,800 monitored paths
changes status every cycle. In this dynamic environment,
mc would never build a reachability matrix. In the enter-
prise network, cycles last 5 seconds and all 56 monitored
paths are stable 99.9% of the cycles. Fig. 6(b) shows the
complementary cumulative distribution function of the du-
ration of path down events. In PlanetLab, paths stay down
for very short periods (95% of paths stay down for only one
cycle). These periods are likely caused by overloaded Plan-
etLab nodes, which may not respond to probes [24]. The
fraction of long downtimes in the enterprise network is sig-
nificantly higher than in PlanetLab. The enterprise network
has only few path status changes; when they happen, they
are more likely associated to a real failure than in PlanetLab.

We now study which aggregation strategy is more ap-
propriate for each network. PlanetLab has many failures

that last less than one cycle and all cycles have path sta-
tus changes; basic would generate many false alarms and
mc would never identify a failure (it would wait indefinitely
for measurements to be stable). The best for PlanetLab is
mc-path with large n (e.g., 10 cycles, allowing the identifica-
tion of all failures longer than 11 minutes as C = 1 minute).
mc-path with n = 10 would only generate false alarms for
failures that last between 9 and 10 minutes, which are rare
(Fig. 6(b) shows that less than 0.015% of path down events
last for 9 or 10 minutes). mc-path would effectively remove
the noise created by unstable paths. In the enterprise net-
work, mc achieves high consistency without compromising
the ability to identify long failures because detection errors
and short failures are rare.

4. PUTTING IT ALL TOGETHER
This section first shows the results of controlled experi-

ments that evaluate the benefits of using the confirmation
and aggregation methods from the previous two sections to
produce reachability matrices for binary tomography. Then,
it shows that our techniques drastically reduce the number
of alarms in PlanetLab and the enterprise network. Finally,
we compare our results to the state-of-the-art algorithm in-
troduced by Kompella et al. [16] and show that we achieve
a higher identification rate with a lower false-alarm rate.

4.1 Setup
We evaluate the effect of our techniques when applied to

a simple binary tomography algorithm that uses measure-
ments from multiple monitors [9, 16]. Given a reachabil-
ity matrix and the network topology, this algorithm uses
a greedy heuristic to build a hypothesis set, i.e., the most
likely set of failed links. First, it creates a candidate set of
possibly failed links with all links in failed paths minus all
links from working paths. Then, it iteratively selects from
the candidate set the link that explains most failures and
adds it to the hypothesis set, until the set of links in the
hypothesis set explains all path failures.

We use the following metrics to evaluate the accuracy of
the hypothesis set and the speed of fault identification:

Identification rate. The percentage of failures for which
the tomography algorithm finds the correct hypothesis
set before the failure ends (i.e., true positives).

False alarm. A false alarm occurs when a link is working
but tomography adds it to the hypothesis set.

In cases of late identification, we disregard the event: We do
not consider it as a correct identification or as a false alarm.
In some cases, if the reachability matrix is inconsistent, the
tomography algorithm may return an empty hypothesis set.
We do not consider an empty hypothesis set as a false alarm.
If the failure ends and the tomography algorithm never out-
puts a correct hypothesis set, then we say that it missed the
failure (i.e., a misidentification).

4.2 Controlled Experiments
In this section, we evaluate the benefits that failure con-

firmation and aggregation strategies each provide indepen-
dently, using controlled experiments on Emulab. Unless oth-
erwise stated, the setup for these experiments is as described
in Sec. 3.5 with the Abilene topology with 1% per-link loss
rate and average loss burst lengths of 40 ms.
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Figure 7: Effect of failure confirmation on false
alarms.

4.2.1 Effects of failure confirmation
This section studies the accuracy of the tomography algo-

rithm using the basic aggregation strategy with and without
failure confirmation. We only present results on false alarm,
because the confirmation mechanism has little effect on iden-
tification rate. Even with no confirmation, the tomography
algorithm is still capable of identifying failures, but it will
trigger many false alarms.

We configure the failure confirmation mechanism accord-
ing to the guidelines presented in Sec. 2.1.3 using the loss
rate and the burst length of the Emulab setup. Given the
goal to achieve F = 10−5 with µmin = 100ms, we find that
κ = 4 and µ = 398ms.

Fig. 7 shows the absolute number of false alarms with and
without confirmation when varying f/C using basic. Fail-
ure confirmation reduces the number of false alarms by two
orders of magnitude. With no confirmation, the coordina-
tor will run the tomography algorithm at any lost probe,
and potentially trigger a false alarm. Without confirmation,
the total number of false alarms increases when the cycle
lengths are smaller (or when f/C increases). This increase
occurs because with a smaller cycle, monitors perform more
measurements during one experiment; there are more probe
losses and consequently more false alarms.

Failure confirmation brings the total number of false
alarms down to less than five for all values of f/C. Most
false alarms occur when failures are short compared to the
cycle length (as in S3 in Sec. 3.3.1), because in this scenario,
basic produces inconsistent reachability matrices.

4.2.2 Effects of aggregation strategies
We now use the failure confirmation mechanism (config-

ured as in the previous section) and compare the accuracy of
the different aggregation strategies. For multi-cycle strate-
gies, n = 2. Fig. 8 shows the accuracy of the tomography
algorithmin experiments with 0.6% of detection errors. As
usual, we vary f/C on the x-axis.

Fig. 8(a) shows the identification rate of the tomography
algorithm. Similar to the analysis of consistency in Sec. 3,
when failures are long (i.e., f/C > 3), basic and mc-path

aggregation correctly identify all failures, whereas mc misses
10% of failures because of detection errors. These errors trig-
ger path status changes, which prevent mc from obtaining
a reachability matrix that is stable for n cycles. In these
cases, the failure is not identified. This figure also shows
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Figure 8: Effect of aggregation strategies on tomog-
raphy, 0.6% of detection errors.

that basic cannot identify failures shorter than C. Interme-
diate failures (with 1 ≤ f/C ≤ 2) can only be identified if
basic builds the reachability matrix before the failure ends,
i.e., only if tde ≤ f −C. Multi-cycle strategies can filter out
short (i.e., f < nC) failures that can not be reliably identi-
fied without increasing the number of false alarms. Missing
these short failures is not an issue because they do not char-
acterize persistent blackholes.

Fig. 8(b) shows the total number of false alarms triggered
by the tomography algorithm using each of the aggregation
strategies; the y-axis is in log scale. As discussed in Sec. 3,
basic triggers many false alarms, whereas mc triggers the
smallest number of false alarms, because it never builds a
reachability matrix caused by detection errors (at the price
of identifying less failures as seen in Fig. 8(a)). The number
of false alarms resulting from the mc-path strategy does not
depend significantly on detection errors.

Because we aim to identify persistent blackholes, we per-
form different experiments where the goal is to identify long
failures without triggering false alarms due to short ones.
We inject long and short failures simultaneously, varying
duration of short failures from 20% to 70% of that of long
failures. We explore ratios of f/C from 2, the lowest value
that still guarantees consistency (Sec. 3), to 30, correspond-
ing to very high probing rates. We configure the multi-cycle
strategies to detect failures longer than a given threshold
ftarget by taking Eq. (11) into consideration and picking the
largest n such that nC < ftarget.

Fig. 9 presents the identification rate and number of false
alarms for the experiments where longer failures last for
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Figure 9: Aggregation with overlapping failures.

90 seconds and shorter ones last for 20 seconds. In contrast
to the other plots in this section, the x-axis presents the
cycle length. These experiments show that mc misses most
of the longer failures because of the instability of path sta-
tuses created by shorter failures, which have the same effect
as detection errors. All failures that mc identifies are cases
where short failures only affect paths that are also affected
by long failures. mc is very conservative and never trig-
gers a false alarm. basic correctly identifies all long failures
because there are intervals where the long failure persists
but no short failure is happening, but it triggers many false
alarms (Fig. 9(b)). mc-path is a good compromise between
these extremes. It correctly identifies long failures, while
keeping a small number of false alarms. All of these false
alarms occur when a short failure occurs just after a long
one, and this short failure affects a subset of the paths that
were affected by the long failure. In this scenario, mc-path

identifies the short failure, which we label as a false alarm.
These results confirm the findings from our analysis. Both

detection errors and short failures reduce the accuracy of
aggregation strategies. basic triggers many false alarms and
mc misses some failures, so mc-path is a good method to
use in environments where detection errors are common.

4.3 Wide-area Experiments
We apply the tomography algorithm on measurements

from PlanetLab and the enterprise network to evaluate the
effect of confirmation and aggregation on the number of
alarms raised in a real network. We show that confirmation
and multi-cycle aggregation reduces the number of alarms
from thousands to a few.

PlanetLab Enterprise
no conf. conf. no conf. conf.

basic 16,261 16,260 6,256 225
mc — — 13 17
mc-path 251 135 27 27

Table 3: Number of alarms in about two weeks.

We use the same measurements introduced in Sec. 3.5.2.
Both experiments lasted for slightly less than two weeks.
The PlanetLab experiment has 16,262 cycles of one minute
(C = 60) and the enterprise network experiment has 228,806
cycles of five seconds each (C = 5). We use a conservative
value for F = 10−6, resulting in κ = 7 and µ = 420 ms for
PlanetLab and κ = 4 and µ = 280 ms for the enterprise. We
configure multi-cycle strategies to identify failures of more
than 11 minutes, as a result we have n = 10 for PlanetLab
and n = 120 for the enterprise network.

Tab. 3 shows the number of alarms with and without con-
firmation for each aggregation strategy. We have no ground
truth for these deployments, so we cannot label which of
these alarms are false. Considering the Emulab results from
Sec. 4.2, most of the alarms we eliminate with our confirma-
tion and aggregation strategies should be false.

These results highlight the contrast between the dynamic
PlanetLab environment and the more stable enterprise net-
work. Applying tomography to raw measurements in either
network (represented by basic without confirmation) would
lead to thousands of alarms: PlanetLab would have one
alarm per minute, and the enterprise network would have
one alarm every three minutes. Although the enterprise ex-
periments have considerably more cycles, fewer than 3% of
them have an alarm, whereas PlanetLab raises alarms at
every cycle. Not even failure confirmation helps reduce the
number of alarms in PlanetLab. This result may seem to
contradict the results from Fig. 3, which shows that failure
confirmation significantly reduces the fraction of confirmed
path failures in PlanetLab. Failure confirmation does re-
duce the total number of path failures in PlanetLab from
1,739,776 to 160,777. Nevertheless, every cycle still has at
least one confirmed path failure, which triggers basic to
build a reachability matrix. Failure confirmation is more
effective to remove alarms in the enterprise network.

mc-path’s flexible aggregation strategy works for both de-
ployments. As shown in our controlled experiments, mc is
not useful in dynamic environments; it never builds a reach-
ability matrix for PlanetLab. In the enterprise deployment,
mc can detect some failures, but not as many as mc-path.
mc-path with confirmation triggers 135 alarms in Planet-
Lab (approximately 12 alarms per day). This number is
more than a hundred times smaller than using basic without
confirmation. In the enterprise network, mc-path reduces
the number of alarms to 2 per day. It is more realistic to
expect that an operational team will deal with two alarms
per day than one alarm every three minutes. We could also
configure our mechanisms to only identify longer failures,
which would reduce even more the number of alarms.

4.4 Comparison to State of the Art
We compare our approach to that of Kompella et al. [16],

which is the most closely related work to ours. We present a
brief overview of the previous approach, describe the exper-
iment setup, and compare the performance of each method.
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Figure 10: Comparison of identification rate.

We find that our approach has both a higher identification
rate and lower false-alarm rate for all blackholes that last at
least three cycles.

Overview and experiment setup. Kompella et al.’s
method works as follows: (1) A coordinator groups every
lost probe into a failure signature; this failure signature is a
type of reachability matrix, except that each element counts
the number of lost probes in a path. (2) The coordinator
builds a hypothesis set for a failure signature by iteratively
selecting the link that explains the largest number of lost
probes. (3) The coordinator removes links from the hypoth-
esis set that may be due to transient packet losses. In step
three, we consider only their best filtering technique, called
absolute. This technique removes links from the hypoth-
esis set if the absolute number of failures they could have
caused is less than a chosen threshold, τ . We keep the net-
work topology fixed and do not apply their techniques to
merge different topology snapshots. absolute works offline
and does not use failure confirmation. Thus, we also con-
sider our aggregation strategies without confirmation.

We compare mc-path and absolute with controlled ex-
periments in Emulab. In these experiments, we use the
GEANT topology, because it is bigger than Abilene, and
inject failures of 60 seconds. A bigger topology and longer
failures allows for a more fair comparison; otherwise, the
number of probes that traverse a failure in each measure-
ment bin of absolute would be too small. We vary per-link
loss rates from zero to 1% and average burst lengths from
4 ms to 40 ms. We found that varying the measurement bin
length in absolute does not affect the trade-offs.

Identification rate. Fig. 10 shows the identification rate
of absolute when varying τ for different values of f/C.
We show results for average path loss rates of 1.4% and
average loss bursts of 40 ms (results were similar for other
settings). Reducing τ allows more links in the hypothesis
set, ultimately increasing the number of identified failures.

False alarms. Because absolute only counts probe losses
and does not reset these counters upon a successful probe,
it raises many false alarms. Successful probes are clearly
useful for removing working links from hypothesis sets, but
absolute ignores them. We favor absolute by consider-
ing failures as correctly identified even if its hypothesis set
contains some working links besides the failed links. Fig. 11
shows that decreasing τ increases the number of false alarms,
because with a small threshold, absolute will misclassify
many links as failed.
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Figure 11: Comparison of number of false alarms.

For both identification rate and false alarms, no configu-
ration of absolute achieves the same accuracy as mc-path.
As pointed out by the authors [16], absolute is biased to-
ward adding links visited by many paths to the hypothesis
set, because these links tend to explain more observations
in the failure signature than less visited links. Because ab-

solute has no failure confirmation and ignores successful
probes in building failure signatures, detection errors have a
high probability of causing highly visited links to be added
to the hypothesis set. This approach increases false alarms
and reduces identification rate if the wrong link is chosen to
explain a failure. The delay (not shown) of absolute is pro-
portional to its bin length. The average delay of mc-path

is lower than absolute’s for C > 12 (i.e., f/C > 5).

5. RELATED WORK

Network tomography and monitor selection. Exist-
ing binary tomography algorithms rely on end-to-end path
measurements collected by monitors, as well as a coordinator
that combines this information with the network topology
to identify failures [9,10,16,22]. These algorithms may ben-
efit from our confirmation and aggregation techniques. In
a recent survey, Huang et al. stated the challenges of using
binary tomography in practice [14]. The methods we pro-
pose in this paper systematically address these challenges;
our methods are more flexible and adaptable to various net-
work conditions and achieve higher identification rates with
fewer false alarms. Other previous work has developed path
and monitor selection algorithms [2, 19, 30], which reduce
the number of paths to probe and, consequently, the cycle
length. Our analysis formally relates the cycle length to
overall aggregation delay for various aggregation strategies.

Fault identification systems. NICE [18] correlates differ-
ent data sources from an ISP network to identify intermit-
tent failures. The method incorporates end-to-end measure-
ments but focuses mostly on failures that already appear in
the network’s alarm system (as opposed to blackholes). The
alarms from a system based on binary tomography could be
one more data source for NICE. PlanetSeer [28] passively
monitors TCP traffic in PlanetLab nodes to detect paths
experiencing problems and triggers traceroutes from a set of
vantage points to the effected destinations. Hubble [15] uses
RouteViews data and low-rate pings to run traceroutes to
destinations that are more likely to be experiencing reach-
ability problems. Both systems use traceroutes to identify
problems in the Internet, but traceroutes often reveal the ef-



fect of a failure (i.e., where paths stop), but not necessarily
its location. It is not known to what extent PlanetSeer and
Hubble are accurate, since both were evaluated in the wide-
area Internet without a notion of ground truth; in contrast,
we have evaluated our methods in a controlled setting to de-
termine the accuracy and false alarm rates of our methods
for various failure scenarios.

6. CONCLUSION
Binary tomography algorithms hold great promise for

helping network operators detect and locate a large class
of network failures, including those that are difficult to de-
tect with other methods (e.g., network “blackholes”). De-
spite much previous attention to binary tomography algo-
rithms, two significant obstacles have prevented network to-
mography from being applied in practice: (1) the inability
to distinguish persistent blackholes from bursty, congestion-
related losses; and (2) the lack of synchronized end-to-end
measurements. This paper has designed and evaluated con-

firmation and aggregation methods that address these two
problems, respectively. We generated analytical models to
explain the accuracy of detection and consistency of the
reachability matrix, validated these models using controlled
experiments on the Emulab testbed, and showed that these
methods quickly and accurately identify all failures that are
longer than two measurement cycles, with few false alarms.
In our future work, we plan to use these methods in conjunc-
tion with the algorithms themselves to build a real-time,
tomography-based monitoring system that can detect and
locate network blackholes in real time.
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