
Resonance: Dynamic Access Control for Enterprise Networks

Ankur Nayak, Alex Reimers, Nick Feamster, Russ Clark
School of Computer Science, Georgia Tech

ABSTRACT
Enterprise network security is typically reactive, and it relies
heavily on host security and middleboxes. This approach
creates complicated interactions between protocols and sys-
tems that can cause incorrect behavior and slow response to
attacks. We argue that imbuing the network layer with mech-
anisms for dynamic access control can remedy these ills.
We proposeResonance, a system for securing enterprise net-
works, where the network elements themselves enforce dy-
namic access control policies based on both flow-level infor-
mation and real-time alerts. Resonance uses programmable
switches to manipulate traffic at lower layers; these switches
take actions (e.g., dropping or redirecting traffic) to enforce
high-level security policies based on input from both higher-
level security policies and distributed monitoring and infer-
ence systems. We describe the design of Resonance, apply it
to Georgia Tech’s network access control system, show how
it can both overcome the current shortcomings and provide
new security functions, describe our proposed deployment,
and discuss open research questions.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign C.2.6 [Computer-Communication Networks]: Internet-
working

General Terms: Algorithms, Design, Security

Keywords: enterprise networks, access control, pro-
grammable networks

1. Introduction
Enterprise networks host many heterogeneous and poten-

tially untrusted devices that may be vulnerable to compro-
mise. Despite significant advances in host security, the
growing number and types of network devices—ranging
from desktops to laptops to handhelds to media consoles—
makes it increasingly difficult to secure every device that
connects to the network. These devices run a variety of op-
erating systems and are subject to a diverse set of vulnera-
bilities. In the face of these challenges, the network must
authenticate these new devices as they arriveand monitor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WREN’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-443-0/09/08 ...$5.00.

their behavior to detect violations of various security policies
(e.g., the presence of unauthorized or compromised hosts).

Today, authenticating and securing hosts on enterprise net-
works is challenging, and network operators typically rely
on a cocktail of reactive, ad hoc techniques. Operators im-
plement policy using middleboxes, intrusion detection sys-
tems, and a collection of complex network configurations.
This post hoc approach creates a plethora of independent,
difficult-to-manage devices that interact in unexpected ways,
resulting in weaker security, incorrect operation (e.g., mis-
configuration [6]), or both. The interaction between these
many “moving parts” creates a system that is brittle and
unresponsive in the face of various security threats. For
example, access control on the Georgia Tech campus net-
work entails interaction between firewalls, dynamic address
(DHCP) servers, virtual LANs, intrusion detection systems,
and the switches and routers themselves [16]. Enterprise
network security today also places a considerable—perhaps
unreasonable—burden on both users and network operators
to ensure that hosts are patched and kept up-to-date, run-
ning virus scanners and host-level intrusion detection sys-
tems, etc.

Instead of placing trust in the end hosts or relying on
security middleboxes, an enterprise network should offer
mechanisms that directly control network traffic according
to dynamic, fine-grained security policies, and in response
to input from distributed network monitors. Extending the
metaphor of a network operating system [10] to the design
of secure networks, we present the design ofResonance,
which provides mechanisms for directly implementing dy-
namic network security policies in the network, at devices
and switches, leaving little responsibility to either the hosts
or higher layers of the network. We draw inspiration from
the design of secure operating systems, where complex sys-
tem components are built using, small, hardened, trusted
components as a base. Similarly, Resonance imbues the net-
work layer itself with the basic functions needed to imple-
ment security policies, as well as a control interface that al-
lows monitoring systems to control traffic according to pre-
defined policies.

As in previous work (e.g., Ethane [1]), Resonance con-
trols traffic using policies that a controller installs in pro-
grammable switches. Extending this paradigm, we create a
dynamic access control framework that integrates the con-
troller with monitoring subsystems. This integration allows
an operator to specify how the network should control traffic
on an enterprise as network conditions change. For example,
Resonance can automatically quarantine hosts or subsets of
traffic when a compromise or other security breach is de-
tected. In this paper, we explore this design in the context

of access control and monitoring on the Georgia Tech cam-
pus network. To the best of our knowledge, no campus net-
work today allows dynamic, fine-grained network policies
based on integration with monitoring systems. We explore
how Resonance not only simplifies the implementation of
network security policies, but also enables fine-grained se-
curity policies and a wider range of features.

Recent trends enable this integration of dynamic monitor-
ing and control. First,programmable (and software-based)
network devices [3, 14] allow more direct, fine-grained con-
trol over network traffic. At first blush, programmable net-
work devices might seem to present yet another source of
complexity, but we believe that this programmability actu-
ally presents an opportunity to proactively secure the net-
work layer. Second,distributed network monitoring algo-
rithms can now quickly and accurately correlate traffic from
many distinct (and often distributed) sources to detect co-
ordinated attacks (e.g., for detecting botnets [9] and spam-
mers [15]). Finally, the trend towards logically centralized
network control [7,8] allows us to more easily integrate dis-
tributed network monitoring with dynamic network control.

Consider the task of quarantining an infected host, which
involves specifying a security policy (e.g., which indicates
the nature of traffic that might indicate a compromised host),
monitoring the network traffic to detect possible violations
of security policy, and taking the appropriate action to cor-
rect the violation. This task currently requires network ad-
ministrators to (1) install on-path firewalls that perform on-
path inspection of traffic; and (2) update firewall rules when
a compromised host is detected. Instead, Resonance pro-
vides an interface for distributed inference algorithms todi-
rectly control the behavior of network traffic. Distributed
inference using existing subsystems can monitor traffic at
higher layers and detect compromised hosts (e.g., [9, 15]).
Resonance can integrate these alarms withactions that the
switches directly implement (e.g., redirecting, rate-limiting,
or dropping traffic).

Despite the promise of Resonance’s design and recent
trends that could make its deployment more feasible, we are
grappling with many challenges in our initial test deploy-
ment. First, Resonance mustscale to a large number of users
and traffic flows: The residential network alone on the Geor-
gia Tech network has 16,000 active users. The system must
provide flexibility and dynamic control, without storing a
prohibitive amount of state at the switches themselves or in-
troducing excessive delays on packet forwarding. Second,
Resonance must beresponsive to various changes in network
policy: It must quickly authenticate legitimate network hosts
and devices, and it must quickly quarantine hosts that violate
security policies. Third, the controller and programmable
switches must beintegrated with real-time monitoring and
alert systems; the controller must be able to quickly corre-
late and synthesize alerts and quickly send control messages
to switches to affect traffic flows. Finally, the control chan-
nel must be secure: the controller and switch interfaces must
be robust to attack, and the control channel between the con-
troller and the devices must be available.

Figure 1: Current START Architecture.

This paper makes the following contributions. First, we
describe the architecture for dynamic network monitoring
and access control in the Georgia Tech campus network
and enumerate various shortcomings of this design. Sec-
ond, we describe Resonance, a framework for implementing
dynamic, fine-grained access control in enterprise networks.
As part of this design, we introduce a new framework and
set of mechanisms for specifying and implementing dynamic
access control in enterprise networks. Third, we explore how
Resonance can simplify and improve dynamic access control
in the context of the Georgia Tech campus network. Finally,
we describe research challenges and an initial testbed where
we plan to evaluate Resonance before its ultimate deploy-
ment on the campus network.

The rest of the paper is organized as follows. Section 2
presents an overview of the current authentication infrastruc-
ture on the Georgia Tech campus network and background
on OpenFlow. Section 3 describes the Resonance design;
Section 4 describes how we plan to apply Resonance to ac-
cess control on the Georgia Tech network. Section 5 de-
scribes challenges, Section 6 presents related work, and Sec-
tion 7 concludes with a summary and research possibilities.

2. Background
We describe the network access control problem in the

context of the Georgia Tech campus network and introduce
OpenFlow [14], an interface for programmable switches on
which we base our design.

2.1 Access Control and Monitoring
Campus and enterprise networks are often large, heteroge-

neous, and unmanageable. Thus, network administration can
be both troublesome, manual, and error-prone. Network ad-
ministrators often encounter situations where machines are
infected or compromised. Today, the network operator must
manually remove or quarantine the machine from the net-
work, which is tedious. The network should offer flexible,
fast control over network traffic while also scaling to a large
number of users and traffic flows. To the extent possible,

network management should also be automated, to ease the
burden on the network administrators.

2.1.1 Current system overview
Figure 1 shows the current START architecture [16], the

authentication system deployed in the Georgia Tech Cam-
pus. It is currently based on virtual LANs (VLANs) and
VLAN Management Policy Server (VMPS) [19]. The
START system supports the following functions:

Registration The registration system provides the Web in-
terface to the backend registration database, DHCP, DNS,
authentication, and updates for external systems. The Web
interface guides users through the registration process. The
DNS server returns the IP address for the registration server
for all DNS queries, except for a list of domains needed for
patching (e.g., windowsupdate.com). The system runs two
DHCP servers: One for the unregistered VLAN, and one
for the registered VLAN. Each instance has its own config-
uration files that are created automatically from data in the
registration system’s database.

Scanning During the registration process, systems are
scanned for known vulnerabilities. If the scan reveals vul-
nerabilities, the user is presented with these vulnerabilities
and given an opportunity to update the system. The firewall
allows traffic to the appropriate update servers.

Firewall The registration VLAN uses a firewall to block
network traffic to unregistered hosts. The firewall allows
Web and secure Web (i.e., port 80 and 443) traffic to pass
so that hosts can reach update sites. Various routers and
switches create the necessary VLANs. The local switches
determine the VLAN for each machine that joins the net-
work. The switch will download VLAN maps periodically
from a VMPS. Unknown MAC addresses are assigned to the
unregistered VLAN and known MAC addresses are placed
onto the appropriate subnet. VMPS periodically downloads
the VLAN maps from the registration server. Security is en-
forced with ARP tables that map each MAC address to its
registered IP address.

2.1.2 Problems with the current design
The current architecture has several shortcomings:

1. Access control is too coarse-grained.START de-
ploys two different VLANs to separate infected or
compromised machines from healthy machines. This
segregation results in all compromised hosts residing
on a single VLAN; such a configuration does not pro-
vide proper isolation, since these infected hosts are
not isolated from each other. Additionally, relying on
VLANs makes the system inflexible and less config-
urable, because VLANs typically map hosts to network
segments according to MAC address,not according to
individual flows.

2. Hosts cannot be dynamically remapped to different
portions of the network. In the current configuration,
when a machine is mapped to a different part of the

network, it must be rebooted to ensure that it receives
a public IP address, which is inconvenient because it
relies on user intervention.

3. Monitoring is not continuous. Authentication and
scanning only occur when a network device is initially
introduced; if the device is subsequently compromised
(or otherwise becomes the source of unwanted traf-
fic), it cannot be dynamically remapped to the garden-
walled portion of the network.

Many of the current shortcomings result from the fact that
security functions have been added on top of the existing net-
work infrastructure. This design was natural when switches
needed to be treated as “black boxes”; however, switch
vendors have begun to expose a standard interface, Open-
Flow [14], whereby an external controller can affect how a
switch forwards traffic. We summarize OpenFlow below.

2.2 OpenFlow
OpenFlow-enabled switches expose an open protocol for

programming the flow table and taking actions based on en-
tries in these flow tables. The basic architecture consists of
a switch, a centralizedcontroller, and end hosts. The switch
and the controller communicate over a secure channel using
the OpenFlow control protocol [14], which can affect flow
table entries on the switch. Currently, all OpenFlow switches
support three actions: (1)Forward this flow’s packets to a
given port or ports. This function allows packets to be for-
warded. (2)Encapsulateand forward this flow’s packets to
a controller. In this case, the packet is delivered to a secure
channel, where it is encapsulated and sent to a controller.
This function may be used for the first packet in a flow, so a
controller can decide if the flow should be added to the flow
table. (3)Drop this flow’s packets. Sections 3 and 4 explain
how we use OpenFlow in the context of Resonance.

3. Resonance Design
We describe the design of Resonance, explain how this

design enables fine-grained, dynamic control over traffic for
implementing security policies.

3.1 Overview
The high-level Resonance architecture has the follow-

ing salient features: a policy specification framework, dis-
tributed network monitoring, and the ability to take specific
actions using programmable switches.

Policy specification frameworkWe base our policy specifi-
cation framework on existing access control frameworks; ex-
isting frameworks typically assign each principal to a secu-
rity class. Because access control in Resonance is dynamic,
each principal (i.e., host) has both a security class and a state.
Resonance allows a network operator to specify a variety of
functions based on a principal’s security class and state. For
example, given information about a machine entering a com-
promised state, the controller can instruct switches to treat
network traffic accordingly, based on a higher-level specifi-
cation of security policy. In this paper, we focus on the ac-
cess control framework, rather than the language to specify

the policy itself; ultimately, policy languages such as FSL
might be extended to support our policy framework [12].

Resonance’s policy specification framework provides sig-
nificantly finer-grained access control than existing mecha-
nisms. Today, hosts that belong to the same security group
belong to a common VLAN, but all traffic on the same
VLAN is subject to the same policy, and hosts on the same
VLAN are not protected from each other. Additionally, be-
cause the VLAN identifier is only 12 bits, a network is re-
stricted to 4,096 VLANs. These VLANs can be quickly
exhausted on a large network with many fine-grained poli-
cies, and some policies—such as partitioning hosts from one
another—are simply not feasible.

Distributed network monitoring Rather than relying on
host-level security, Resonance leaves the task of detecting
security violations to the network itself. Recent work has
demonstrated that distributed inference based on analysisof
network traffic can perform essential network management
tasks, such as detecting compromised hosts [9], filtering
spam [15], and troubleshooting network performance degra-
dations [5, 17]. Resonance makes this monitoring intrinsic
to the architecture: Network elements can forward reports
about network traffic (e.g., flow level information about DNS
lookups or specific attack traffic) to a centralized locationfor
performing this inference.

Most existing monitoring systems raise alerts based on the
behavior, performance, etc. of individual hosts. These de-
tection systems miss the opportunity to detect coordinated
behavior that may suggest various events (e.g., malware
spreading, hosts participating in a botnet). By incorporating
input from distributed inference systems, Resonance may be
able to defend against a larger class of attacks.

Fine-grained, dynamic control with programmable
switches Whereas today’s networks completely decouple
monitoring from lower-layer traffic control, Resonance al-
lows switches to dynamically re-map clients based on other
input (e.g., alarms from distributed network monitoring sys-
tems, such as BotMiner [9] and SpamTracker [15]). Alert
systems control traffic by sending messages to the controller,
which in turn controls switch behavior via the standard,
narrow OpenFlow-based switch interface. This refactoring
keeps on-path forwarding decisions simple, while still allow-
ing complex policies to be implemented through a standard
control interface.

Resonance’s coupling of distributed inference-based alert
systems with programmable switches enablesdynamic ac-
cess control, whereby network devices may treat traffic dif-
ferently based on the controller’s view of a host’s current
state and security class. This ability to both specify and im-
plement dynamic access control contrasts sharply with exist-
ing network configurations, whereby hosts mapped to a sin-
gle VLAN, and this mapping is only overridden with manual
operator intervention.

3.2 Policy Specification
In contrast to existing access control frameworks, Reso-

nance’s access control allows fordynamic policies. Dynamic

policies are essentially lattice-based access control [4], ex-
cept that each principal has both a security classand a state,
where the state can change over time according to a set of
transitions defined by the policy. The policy effectively dic-
tates what actions a switch should take on traffic to and from
a host that is of a particular security class and state. Dy-
namic policies allow the network switches to change how
they control a host’s traffic as network conditions change.

A principal’s security class dictates the type and nature of
access that the host has to other resources on the network
and the extent to which the host is monitored. Based on the
principal, a network operator may both restrict the type of
access that a host has to the network and mandate that the
host be monitored more or less extensively. For example,
on a campus network, an operator might wish to ensure that
low-privilege campus guests can only send traffic only to the
global Internet (e.g., to protect hosts on the enterprise from
scans or attacks from a potentially untrusted host). Res-
onance facilitates such policies through a policy specifica-
tion framework that determines: (1) the possible classes and
states for each principal; (2) corresponding access control
policies; (3) actions that network elements should take to
enforce the policy; (4) a specification of how hosts can tran-
sition from one state to another.

Security classesAs in traditional access control models [4],
principals in a Resonance network have security classes that
dictate the access that they (and their traffic) have to other
resources on the network. Ultimately, we may extend Res-
onance so that every resource (i.e., device connected to a
switch port) has a security class, and the lattice will dictate
how traffic may flow to one resource or another.

States and transitionsEach security class has a pre-defined
set of states (and a corresponding state machine) that deter-
mines what states a principal of that class can be in, what
transitions are allowed, and what causes transitions between
states. Each state may also have policies/actions that are to
be taken for certain subpopulations of traffic (where traffic
types are identified by flow attributes). Transitions can spec-
ify, for example, that different alerts from distributed moni-
toring systems can cause a host to transition from one state
to another.

Actions Resonance switches use flow tables that have rules
for matching traffic flows to actions; actions correspond to
those in Section 2.2. This aspect of the design draws on the
features that OpenFlow-based switches provide. The key ex-
tension is that switches may use multiple tables for any given
principal, where the table that the switch uses at any time
depends on the security class and the current state of that
principal. Dynamic updates to tables could be implemented
either by having the controller install new tables on the fly,
or by storing multiple tables for each principal and swapping
tables upon instruction from the controller.

In this paper, we assume that all resources and principals
belong to a single security class. We focus on how to declare
states, transitions, and actions, and how we can implement a

Figure 2: Applying Resonance to START.

dynamic access control framework by using policies to help
the controller map hosts from one state to another. We leave
the integration of security classes and lattice-based access
control for future work.

3.3 From Specification to Operation
The controller implements the access control policies by

installing the appropriate flow table entries into the switches
themselves. Resonance uses the MAC address correspond-
ing to a host’s interface to map traffic back to the appropriate
principal.1 All specifications must have a start state, so that
traffic from an unknown MAC address can be treated ap-
propriately. Subsequently, the controller installs flow table
entries into switches based on the security class and state
of each MAC address. The controller then listens for up-
dates about the state and security class of each host; when a
host transitions to a different state (e.g., if a host compromise
is detected), the controller changes policies at the switches
according to the specification language. The controller es-
sentially “compiles” the dynamic access control specifica-
tion into switch configurations. We envision the controller
directly configuring the switch using OpenFlow, but other
methods (e.g., reconfiguration) are feasible.

4. Applying Resonance to START
In this section, we describe the application of Resonance

to dynamic access control and monitoring in the Georgia
Tech campus network. To simplify the initial design, we
assume that all hosts are in the same security class, and that
only their states are changing in response to results from au-
thentication and scanning. In the future, we plan to explore
how Resonance can also support more fine-grained access
control by assigning specific security classes to both princi-
pals and switch ports.

Overview Figure 2 provides an overview of the network
operation we aim to implement in Resonance. A device
broadcasts a DHCP “discover” message. The DHCP server
sends back a public IP address to the machine. To gain ac-
1This approach depends, of course, on MAC addresses not beingspoofed,
which is generally preventable in enterprise networks. We refer the reader
to previous work [1] for a more detailed discussion of this issue.

Registration State
Match Action
Ethernet Type ARP (0x806) FLOOD
UDP srcport=68 dstport=67 (DHCP ports) FLOOD
UDP srcport=67 dstport=68 (DHCP ports) FLOOD

TCP Dst port 80/443/8080 REDIRECT (to web
portal: 192.168.1.3)

* DROP

Operation State
Match Action

*
FORWARD/DROP
(according to policy
lookup)

Table 1: Flow table entries for Registration and Operation states.

cess to the wide-area Internet, the machine must authenti-
cate itself via the START Web service; OpenFlow-enabled
switches can redirect all HTTP requests from unauthenti-
cated machines to the START Web site by default. Once
a user authenticates the machine, the Web service saves the
MAC address of the machine and updates flow-table entries
to allow access to a restricted set of destinations (e.g., Mi-
crosoft Update). At this point, a scanner examines the de-
vice for potential infections. If the machine passes the scan,
the START Web service sends a request to controller to per-
mit traffic from this machine to be forwarded to any desti-
nation. The network performs continual scanning of hosts,
using distributed inference techniques (e.g., SNARE [11],
BotMiner [9]), quarantining them if necessary.

4.1 States and Actions
The controller maintains a state machine for every MAC

address connected to the network. Here, we will describe
the policies for each state. Every machine can reside in one
of four states. A host can be in theRegistration state, the
Authenticated state, theOperation state, or theQuarantined
state. In the Registration state, the machine is in the process
of authenticating itself. The Authenticated state enablesthe
scanning software to scan for vulnerabilities in the host. In
the Quarantined state, the machine is only allowed to ac-
cess sites for downloading patches and updates; quarantined
hosts cannot exchange traffic with each other. In the Op-
eration state, switches forward traffic according to declared
access control policies and enables proactive monitoring to
detect infected machines in the network.

The controller manages the state of each machine and up-
dates the flow table entries in the switches corresponding
to the current states of the machine. Tables 1 and 2 enu-
merate the policies associated with each state of a host ma-
chine that is trying to authenticate and gain access to the net-
work. For simplicity, we assume the following IP addresses
for the various components: Resnet Router (192.168.1.1),
DHCP Server (192.168.1.2), START Registration Web Ser-
vice (192.168.1.3), vulnerability scanner (192.168.1.4), and
START Quarantine Web page (192.168.1.5). We explain
these policies in detail below. Of course, other entities onthe
network (i.e., DNS server, DHCP server, Web portal) also
need flow table entries; since these are less likely to change

Authenticated State
Match Action
Ethernet Type ARP (0x806) FLOOD
Dst IP=192.168.1.4 (Scanner’s IP) FORWARD
Src IP=192.168.1.4 (Scanner’s IP) FORWARD
TCP dstIP=update sites FORWARD
TCP srcIP=update sites FORWARD
UDP dstport=53 (DNS port) FORWARD
UDP srcport=53 (DNS port) FORWARD
* DROP

Quarantined State
Match Action

TCP dstport=80/443/8080
REDIRECT (to quar-
antine web page)

* DROP

Table 2: Flow table entries for Authenticated and Quarantined states.

state, we focus our discussion on the aspects of Resonance
that involve host authentication.

Registration stateWhen the switch receives a packet from a
machine for which it has no flow table entry, it forwards the
packet to the controller. The controller maintains a database
of authenticated machines, as well as the flow-table entries
associated with them. Table 1 summarizes the flow poli-
cies that reside on the switch: (1) drop all packets other than
HTTP, DHCP, and ARP; (2) broadcast all DHCP and ARP
packets, and (3) forward HTTP requests to the Web portal.

Authenticated state In the Authenticated state, a host has
been authenticated to the network and assigned to the appro-
priate security class, but it has not been verified to be free
of infection. The host must be able to communicate freely
with the scanner. The host is subject to all rules from the
Registration state and is also allowed to communicate with
the scanner. Table 2 summarizes these rules.

Operation state In addition to the normal forwarding poli-
cies, the controller also receives updates from network mon-
itors about the IP addresses of infected (or otherwise misbe-
having) hosts. The switch forwards all packets for this host
according to the security classes and access control policies
of each host under normal operation. If the controller re-
ceives an update about an infected host, it moves that host
to the Quarantined or Registration state and updates switch
flow tables accordingly; we discuss this operation in more
detail in Section 4.2. Table 1 summarizes these rules.

Quarantined state The host is essentially disconnected
from the network, except for the ability to retrieve patches
from pre-specified Web sites. The switch drops all packets
coming from the machine and redirects all HTTP requests
to a Web page informing the user of the infection and pro-
vides pointers to sites where patches are available. Table 2
summarizes these rules.

4.2 Transitions
A host is initially in theregistration state, at which point

the switch forwards DHCP and ARP broadcasts. All other
traffic from the client except for DNS and HTTP traffic to the
portal is blocked, and all requests are redirected to the portal

Figure 3: State transitions for a host. The controller tracks the state
of each host and updates the current state according to inputs from
external sources (e.g., network monitors).

using DNS. If the client authenticates to the portal, the por-
tal sends a message to the controller to move the host into
the authenticated state (“successful authentication”); then,
the controller updates flow table entries in the switches and
triggers a scan of the host. If the client passes the scan, the
scanner informs the controller to move the client into theop-
eration state (“clean after update”). Otherwise, the client is
moved to thequarantined state. In both cases, the controller
updates the flow tables accordingly.

4.3 Resonance Step-by-Step
In this section, we explain how Resonance works step-by-

step when a host connects to the network. We also describe
how the controller manages the flow-table entries when two
hosts attempt to communicate. Finally, we explain how a
machine changes states and how the controller changes the
flow-table entries accordingly.

Let us consider a simple setup with four OpenFlow
switches, one controller, two hosts, and four servers, as
shown in Figure 2. OpenFlow switches establish a connec-
tion with the controller using a secure channel. When a new
host is introduced on the network, it first broadcasts a DHCP
discover message; when the first DHCP packet is received
by the switch connected to the host, it sends this packet to
the controller over a secure channel. According to the poli-
cies in Table 1, the controller (1) establishes a flow-table en-
try to allow DHCP and ARP communication with the host;
(2) adds the host to its database of hosts and marks its state
as “Registration”.

In the Registration state, if a host initiates any traffic that
is not DHCP or ARP, the controller installs a new flow-table
entry into the switch with action=“DROP”, unless the traf-
fic is HTTP, in which case the controller installs an entry to
redirect traffic to the portal, which redirects the user to the
authentication Web site. A machine in the Registration or
Quarantined state cannot initiate a connection, but it can al-
ways receive packets from a machine in the Operation state.
We make this policy rule for simplicity.2

2An immediate implication is that a communication is possible from Oper-
ation state machines to Quarantined host machines. BecauseQuarantined

The Web portal allows the user to authenticate and no-
tifies the controller of the status of the authentication via
a separate connection. Upon successful authentication, the
controller moves the host to Authenticated or Quarantined
state. It then deletes all old flow-table entries corresponding
to the host’s MAC address and installs a new set of flow-
table entries, as shown in Table 2. The only change made
from Registration state to Authenticated state is that the host
can communicate with the scanner and update sites. The
scanner scans the machine for potential vulnerabilities. If
the machine is found to be vulnerable, it is redirected to up-
date sites to patch potential vulnerabilities. Once the up-
date patches have been applied, the scanner notifies the con-
troller, which then transfers the host to the Operation state
and updates the flow-table entries accordingly.

Once in the Operation state, the host can connect to any
other Internet destination. During normal operation, a host
may become compromised. If network alarms inform the
controller about the event, the controller can then shift the
host to Authenticated state.

5. Challenges

ScaleWhen deploying the architecture on the campus net-
work, we expect to encounter numerous challenges involv-
ing scalability. For example, the Georgia Tech residential
network must support approximately 16,000 users; the por-
tion of the campus that runs START comprises more than
13,000 network ports, and future plans include expanding
START to more than 40,000 active ports across academic
buildings and merging START with the (separate) access
control system currently used for the campus wireless net-
work. A significant challenge will be implementing dy-
namic, fine-grained policies with flow-table entries, without
exhausting switch memory or slowing forwarding. Recent
proposals for optimizing customizable forwarding [2] may
offer a useful starting point.

ResponsivenessEnd hosts and network devices must be able
to quickly authenticate to the network controller; similarly,
the network must be able to quickly quarantine a compro-
mised host and curtail unwanted traffic. The current design
is inadequate in this regard, as it has a single VLAN for quar-
antined hosts and requires hosts to re-boot to reassign hosts
from one VLAN to another. The Resonance architecture of-
fers more fine-grained, dynamic control over hosts’ traffic,
but the control framework between the switches and con-
troller must still be able to map hosts from one part of the
network to another as quickly as possible. To enable this
responsiveness, distributed inference must be fast, and the
controller must be able to quickly and reliably alter the be-
havior of the switches themselves.

Integration with monitoring The current START network
access control system scans hosts when they are first in-
troduced into the network but cannot re-assign these hosts
to different networks when they are deemed to be compro-

machines cannot initiate external communication, they arerelatively im-
mune to threats.

mised. In our ongoing work, we will integrate alarms that
arise from distributed monitoring and inference into mecha-
nisms that can affect traffic flows more directly.

Securing the control framework The effectiveness of Res-
onance depends on the existence of a secure, reliable chan-
nel between the controller and the switches. The control
messages between the controller and the switches must be
authenticated (so that switches do not alter their behavior
based on arbitrary control messages), and the channel must
remain reliable and available, even when network utilization
is high or the network itself comes under attack.

6. Related Work
Resonance draws inspiration from 4D [8] and Ethane [1],

both of which advocate controlling network switches from a
separate, logically centralized system. Ethane [1] is perhaps
the most closely related work to Resonance. Like Ethane,
Resonance defers traffic control to a centralized controller;
however, Ethane does not support continuous monitoring
and inference-based policy control. Ethane focuses primar-
ily on host authentication, as opposed to security related
problems such as monitoring and containment. Resonance
extends the Ethane paradigm by exploring howdynamic se-
curity policies and actions (e.g., actions based on alerts from
distributed detection systems) could be more directly inte-
grated into the network fabric.

NOX is a recently proposed “network operating system”
that provides a uniform, centralized programmatic interface
for a network [10]. Whereas NOX provides a platform for
experimentation and research with new protocols, our pro-
posed architecture should improve security by embedding
security into the network itself. NOX could serve as a plat-
form which we could use as the basis for our architecture.
FSL is a policy language for NOX that allows network op-
erators to write and maintain policies efficiently. Resonance
focuses more on creating the actual policies that relate to dy-
namic access control and monitoring in enterprise networks

Resonance allows network devices to operate on the gran-
ularity of flows. This function is enabled by the emerging
OpenFlow standard [14] and has origins in the designs of
earlier protocols (e.g., ATM [13]) and programmable switch
architectures [18]. Recent trends in packet forwarding ar-
chitectures (e.g., [2]) have tried to achieve a similar shift to-
wards the lower layers by having the software part of the
switch make forwarding and pass it on to the hardware.

Some of the features of Resonance can be implemented
using today’s protocols. VMPS [19] allows a network to
map a host to its corresponding VLAN based on its MAC
address. However, network operators achieve this mapping
via manual configuration; if a host needs to be re-mapped
based on a change in its state (e.g., if the host becomes
compromised), VMPS provides no mechanism for automat-
ically remapping such a host; this remapping must either be
done manually, or a higher-layer, on-path security middle-
box must take appropriate action. Resonance’s access con-
trol is both more dynamic and more fine-grained than the
access control enabled by VMPS and VLANs.

Figure 4: Research testbed.

7. Summary and Future Work
Existing enterprise networks leave network monitoring

and access control to higher layers (e.g., DHCP, application-
level intrusion detection, etc.) and place considerable
amounts of trust and responsibility into the network devices
themselves, resulting in complex, error-prone configurations
for enforcing security policies. To remedy these ills, network
access control must be more dynamic and fine-grained, and
it must make as few assumptions as possible about the be-
havior of the host. We have introduced a new framework,
Resonance, for specifying dynamic access control policies
for networks, described how this might be implemented in an
OpenFlow-based architecture, and shown how to apply Res-
onance in the context of the Georgia Tech’s network access
control framework. In addition to the test and operational
deployments themselves, we are exploring how Resonance
can support more complex access control policies.

Testing and deployment Figure 4 illustrates the initial
deployment platform that we are building to test the
OpenFlow-based START architecture. The deployment is
a dedicated network that is physically separate from the pro-
duction network and yet has its own IP prefix and upstream
connectivity. This platform will allow us to deploy and test
Resonance before deploying it on the production network.

The campus network currently supported by START was
recently upgraded to include approximately 275 switches
that are capable of supporting the OpenFlow firmware. One
of the more significant practical challenges in the campus
deployment will be straining the scalability of the system on
a production network without disrupting connectivity. For
example, the proposed architecture may involve installing
many flow table entries in the switches, which may either
exhaust memory or slow lookup performance if entries are
not stored efficiently, or if state is not offloaded to the con-
troller. To address this concern, we will first stress-test the
design on the research testbed and subsequently the archi-
tecture on a smaller number of production switches before
completely rolling out the architecture.

Acknowledgments
This work was funded by NSF CAREER Award CNS-
0643974 and NSF Awards CNS-0721581 and CNS-
0751134. We thank David Andersen, Ron Hutchins, Hy-
ojoon Kim, Richard Mortier, Jennifer Rexford, and Matt
Sanders for helpful feedback and suggestions.

REFERENCES
[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker. Ethane : Taking control of the enterprise. InSIGCOMM
’07, 2007.

[2] M. Casado, T. Koponen, D. Moon, and S. Shenker. Rethinking
packet forwarding hardware. InProc. Seventh ACM SIGCOMM
HotNets Workshop, Nov. 2008.

[3] Cisco Application eXtension Platform Overview.
http://www.cisco.com/en/US/prod/collateral/
routers/ps9701/white_paper_c11_459082.html .

[4] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, May 1976.

[5] N. Duffield. Simple Network Performance tomography. InProc.
ACM SIGCOMM Internet Measurement Conference, Miami, FL,
Oct. 2003.

[6] N. Feamster and H. Balakrishnan. Detecting BGP Configuration
Faults with Static Analysis. InProc. 2nd Symposium on Networked
Systems Design and Implementation, Boston, MA, May 2005.

[7] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, andK. van der
Merwe. The case for separating routing from routers. InACM
SIGCOMM Workshop on Future Directions in Network Architecture,
Portland, OR, Sept. 2004.

[8] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approachto
network control and management.ACM Computer Communications
Review, 35(5):41–54, 2005.

[9] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering
analysis of network traffic for protocol- and structure-independent
botnet detection. In17th USENIX Security Symposium, 2008.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker. NOX: towards an operating system for networks.
ACM SIGCOMM Computer Communication Review, 38(3):105–110,
July 2008.

[11] S. Hao, N. Syed, N. Feamster, A. Gray, and S. Krasser. Detecting
Spammers with SNARE: Spatio-temporal Network-level Automatic
Reputation Engine.http://www.cc.gatech.edu/

˜ feamster/papers/snare-tr.pdf , Feb. 2009. In
submission; Earlier version appeared as Georgia Tech Technical
Report GT-CSE-08-02.

[12] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and S. Shenker.
Expressing and enforcing flow-based network security policies.
Technical report, Dec. 2008.

[13] P. Newman, G. Minshall, and T. L. Lyon. IP Switching - ATMunder
IP. IEEE/ACM Trans. Netw., 6(2):117–129, 1998.

[14] OpenFlow Switch Consortium.
http://www.openflowswitch.org/ , 2008.

[15] A. Ramachandran, N. Feamster, and S. Vempala. Filtering spam with
behavioral blacklisting. InProc. 14th ACM Conference on Computer
and Communications Security, Alexandria, VA, Oct. 2007.

[16] Scanning Technology for Automated Registration, Repair and
Response Tasks.https://start.gatech.edu/ .

[17] M. B. Tariq, M. Motiwala, and N. Feamster. NANO: NetworkAccess
Neutrality Observatory. InProc. 7th ACM Workshop on Hot Topics
in Networks (Hotnets-VII), Calgary, Alberta. Canada., Oct. 2008.

[18] J. van der Merwe, S. Rooney, I. Leslie, and S. Crosby. TheTempest -
A Practical Framework for Network Programmability.IEEE
Network, 12(3):20–28, May 1998.

[19] Configuring Dynamic Port VLAN Membership with VMPS.
http://www.cisco.com/univercd/cc/td/doc/
product/lan/cat5000/rel_4_2/config/vmps.htm .

