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Abstract—This paper surveys our ongoing work on the use
of software-defined networking to simplify two acute policy
problems in campus and enterprise network operations: access
control and information flow control. We describe how the
current coupling of high-level policy with low-level configuration
makes these problems challenging today. We describe the specific
policy problems faced by campus and enterprise network oper-
ators; illustrate our approach, which leverages recent trends in
separating the network’s “control plane” from the data plane;
and show how this approach can be applied to simplify these
two enterprise network management tasks. We also describe our
ongoing deployment efforts to build a campus network testbed
where trial designs can be deployed and evaluated. We close with
a summary of current and future research challenges for solving
challenges within enterprise networks within the context of this
new paradigm.

I. INTRODUCTION

Network operators face many challenges in the process of
maintaining high availability, good performance, and security.
Many of the tasks that operators of campus and enterprise
networks must perform involve complex debugging and policy
specification tasks. For example, these operators may wish
to allow only certain users access to various parts of the
network; they may also aim to prevent certain sensitive data
from “leaking” between different parts of the network, or from
the internal network to the global Internet, or to rate-limit
applications for certain users. Unfortunately, it is difficult for
network operators to translate these types of high-level policy
and design goals to implementation: until recently, network
devices were largely “closed”, only allowing for adjustment
by means of a vendor’s pre-defined configuration parameters.
Worse yet, these configurations still typically occur at the level
of individual devices, not based on a global perspective of the
network.

This low-level configuration has made it increasingly dif-
ficult for network operators to configure networks correctly,
as the size and complexity of these networks continue to in-
crease. Although previous work has attempted to help network
operators check the correctness of their configurations (e.g.,
rcc [6]), configuring networks to achieve high-level tasks and
policies remains a black art. Even when an operator finally
manages to configure a collection of devices to achieve some
high-level task or implement some policy, the configuration
itself remains extremely brittle: because the configuration rests
on the devices themselves and also depends on various low-
level details (e.g., where the device is located in the network
topology, software versions or vendor models of switches), a

small change in configuration can result in an overall network
configuration that fails to achieve the desired policy and is
difficult to fix.

Two areas where this high-level problem is particularly
acute are access control (defining who has access to what
information and services on the network) and information-
flow control (defining where on the network various infor-
mation should be allowed to travel). Today, operators must
achieve these tasks with a collection of firewall configurations,
complicated VLAN configurations, and an agglomeration of
low-level mechanisms on network devices, each of which
are configured independently. The current state of affairs
results in configurations that are difficult to modify, and nearly
impossible to validate against some high-level policy.

Fortunately, recent developments in the design and capabil-
ities of networked devices do offer some hope. In particular,
many network devices have exposed programming interfaces
to allow third-party software to directly control their behavior,
effectively allowing networking control and logic to be defined
in software (“software-defined networking”). A notable exam-
ple of this paradigm is the OpenFlow switch specification [12],
which allows network switches to be controlled from a remote,
third-party device. This type of control-plane separation is a
common theme across many designs and standards activities:
the IETF FORCES working group and protocol standard [5]
propose to separate the control plane from network devices;
other similar paradigms exist (e.g., Ethane [3], RCP [7],
4D [10]). Such a paradigm offers a wealth of opportunity
for new, “clean” network designs for achieving critical tasks,
because they move complex logic off of individual devices
where control is proprietary, constrained, and federated into a
logically centralized control platform.

In this paper, we describe how shifting control from in-
dividual network devices into a logically centralized control
plane where policies can be expressed at a high level can
result in much simpler configuration. For the two problems of
information flow control and access control, we describe our
ongoing efforts to explore how logically centralized network
control and software-defined networking can simplify these
exceedingly complex network operations tasks. We describe
each problem at a high level, briefly discuss how they are
solved in today’s networks, and show how an approach based
on a separate control plane can help network operators achieve
these tasks in a simpler fashion. Effectively, this simpler
operation results from the fact that network devices are no
longer being configured one-by-one, but rather are being
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directly controlled in a coordinated fashion from a logically
centralized point. We summarize two ongoing projects:

• The Resonance project, an ongoing effort to deploy a new
network access control framework on the Georgia Tech
campus network (Section II). A more detailed description
of this work is also available in a workshop paper [11].

• The Pedigree project, an ongoing effort to develop an
information-flow control system for enterprise networks
(Section III). A demonstration of an early version of this
system was recently presented [14].

These two examples illustrate the range of problems that a
software-defined networking paradigm might be able to solve
in a campus or enterprise network and point to a larger class of
opportunities and challenges that software-defined networking
presents for network configuration and management. This pa-
per focuses on these two case studies, describes the current and
planned deployment efforts, and discusses future opportunities
both within the context of these problem areas and beyond.

The rest of the paper is organized as follows. Section II
describes the campus network access control problem and how
Resonance goes about solving this problem. We describe both
the current design and open challenges. Section III describes
the information flow control problem that many enterprise
networks face, why this problem may be difficult to solve
in practice, how software-defined networking approaches can
simplify some information-flow control problems, and addi-
tional future challenges in this area. Section IV describes our
current campus network deployment at Georgia Tech, where
we are deploying and testing these new network designs in
practice. We close in Section V with a discussion of general
open research problems in this area.

II. ACCESS CONTROL

A common problem that enterprise network operators face
is controlling who can access which portions of the network,
and with which applications. For example, a network operator
may wish to limit guests to only external, rate-limited HTTP
Web access and grant employees more extensive access to
the network. Ability to access the network may also depend
on whether or not a host on the network is deemed to be
infected. In today’s networks, it is not possible to express
these types of policies at a high level; rather, these high-level
policies emerge from a collection of low-level devices, such
as Web authentication portals, VLAN configurations, etc. Our
ultimate goal is to make such high-level policy specification
about access control possible. In this section, we elaborate
on the high-level problem, our current approach, and ongoing
research directions and open questions.

A. Problem Setup and Current Approach

Figure 1 shows the current START architecture [15], which
is the authentication system deployed on the Georgia Tech
campus. It is currently based on virtual LANs (VLANs) and
VLAN Management Policy Server (VMPS) [17] and provides
for dynamic network assignment that allows users to be placed
on a separate network for authentication, scanning, and access
to software update services to correct any problems discovered

Fig. 1. Current architecture for START, the existing access control framework
on the Georgia Tech campus network.

during the scan. After a client is authenticated and passes these
tests, the system migrates a client to the regular VLAN with
full network access and gives the client a public IP address.
The START system supports the following functions:

The registration system provides the Web interface to the
backend registration database, DHCP, DNS, authentication
and updates for external systems. The Web interface guides
users through the registration process. The DNS server for
the network is a custom application written in Perl. It returns
the IP address for the registration server for all DNS queries,
except for a list of domains needed for updating workstations
(e.g., windowsupdate.com). Two instances of the DHCP server
are run: One for the unregistered VLAN, and one for the
registered VLAN. Each instance has its own configuration files
that are created automatically from data in the registration
system’s database.

During registration, systems are scanned for known vul-
nerabilities. If the scan reveals vulnerabilities, the user is
presented with these vulnerabilities and given an opportunity
to update the system. The firewall for the network allows
traffic to get to the appropriate update servers for Microsoft
and Apple. The registration VLAN uses a firewall to block
network traffic to unregistered desktops. However, the firewall
allows Web and secure Web (i.e., port 80 and 443) traffic to
pass so that desktop machines can reach update sites. Various
routers and switches are employed to facilitate creating the
VLANs necessary for the needed networks. The local switches
determine which VLAN for each machine that joins the
network. The switch will download VLAN maps periodically
from a VMPS. Unknown MAC addresses are assigned to the
unregistered VLAN and known MAC addresses are placed
onto the appropriate subnet. VMPS periodically downloads the
VLAN maps from the registration server. Network security is
enforced by creating ARP tables that map each MAC address
to its registered IP and pushing that table to each router.

This approach has several shortcomings. First, access con-
trol is too coarse-grained. START deploys two different
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VLANs to separate infected/compromised machines from
healthy machines. This segregation results in all compromised
hosts residing on a single VLAN; such a configuration does
not provide proper isolation, since these infected hosts are not
isolated from each other. Relying on VLANs makes the system
inflexible and less configurable, because VLANs typically map
hosts to network segments according to MAC address; the
number of VLANs on a single network is also limited in
practice, which constrains the number of unique policies any
network might have. Second, moving individual hosts from
one portion of the network to another is difficult. In the current
configuration, when a machine is mapped to a different part
of the network, it must be rebooted to ensure that it receives
a public IP address, which is inconvenient because it relies on
user intervention. Third, integrating access control with other
systems that might help provide input for access control (e.g.,
rate limiters, intrusion detection systems, etc.) is challenging,
if not impossible—each new system introduces an additional
“moving part” that increases complexity and makes the overall
system less likely to function as intended.

B. Resonance: Design and System Overview

We are exploring how decoupling network control and con-
figuration from the devices themselves can simplify network
configuration and policy specification. Our first step has been
to re-implement the START system in an OpenFlow [12]-
based network design framework. The high-level idea is for a
central controller to track the state of each individual device,
associate each device with a user, and map each user-device
combination to the appropriate corresponding security policy.

Each device’s MAC address is associated with a user, and
each MAC address is also associated with a particular state
at any given time. Actions may arrive at the controller that
might cause the controller to change the state of a particular
device. For example, if a host or network intrusion detection
system detects that a host may have been compromised, the
controller may alter its view of the host’s state and adjust
networking forwarding behavior accordingly. It may even take
different actions depending on the type of user is associated
with the action. For example, if an intrusion detection system
deems that a guest’s machine is compromised, it may decide
to completely quarantine that host from the network; if, on the
other hand, the compromised host is deemed to belong to an
employee or administrator, the controller may take less drastic
actions (e.g., filtering certain ports, redirecting the host to sites
with software patches).

Currently, an operator specifies a policy in Resonance by
defining a state machine, which reflects the complete set of
possible states that a host might be in at any point in time,
events that can result in state transitions, and the forwarding
behavior that each switch should apply to hosts that are in each
respective state. Figure 2 shows an example state machine that
implements the basic policies for the Georgia Tech campus
network. We have implemented and deployed this system
on separate deployed network infrastructure running in our
research lab; this network is currently supporting about ten
concurrent users; Section IV describes this deployment in

Fig. 2. State transitions for a host. The controller tracks the state of each
host and updates the current state according to inputs from external sources
(e.g., network monitors).

further detail. Our future plans involve expanding the use of
this network, as well as the range of policies that operators
can express and implement on this network.

C. Research Challenges

Our work thus far on Resonance presents many avenues for
future research directions. Perhaps one of the most interesting
is the opportunity to define network behavior with a software
controller, and the related opportunities and challenges that
this presents. Resonance makes it possible to control network-
wide behavior and define a wide range of policies in terms of
a logically centralized software program, potentially making it
possible for operators to define policies that are considerably
more expressive and complex than with direct, low-level
configuration of network devices. We are exploring the range
of functions that the Resonance framework might enable, such
as per-user rate limits and prioritization.

Another potential opportunity lies in the area of validation
and testing: because Resonance allows network-wide policies
to be expressed as programs at a controller, it may also be
possible to apply conventional (and well-explored) software-
engineering and testing techniques to network configuration.
We are in the process of exploring how conventional ap-
proaches to software testing might improve network correct-
ness and reliability, as well as how various programming
languages could offer support to enable better support for
checking and validating network operation.

III. INFORMATION FLOW CONTROL

We now describe our current efforts to decouple policy from
network configuration for solving information flow control
problems in the network. Information flow control problems
in networking continue to be severe: In Deloitte’s recent
Global Security Survey, nearly half of the companies surveyed
reported some internal security breach; of those, about a third
of breaches resulted from viruses or malware, and another third
resulted from insider fraud [4]. In this section, we describe a
new method we are developing to control information flow in
the network, rather than relying purely on host- or application-
level control of information flow. We describe the problem



4

setup, our initial design of an information-flow control system
and how it might be implemented within a network based on
OpenFlow [12], and describe various open research challenges
in this area.

A. Problem Setup and Current Approach

Enterprise, military, and other networks may host sensitive
information whose information flow must be controlled. Net-
work operators must carefully control and monitor the flow
of this information within and across the network. Today’s
mechanisms for controlling information flow have primarily
been host-based: operating systems can “taint” portions of
memory or applications based on the inputs to a particular
process or resource. Unfortunately, if a host is compromised,
or if an untrusted entity otherwise takes control of a host on the
network, that information may propagate in unintended ways.
Worse, once information has leaked, tracking the provenance
of the leaked data to determine other hosts on the network that
may have learned the information is particularly challenging.

Existing solutions to track and control information flow
have taken two approaches: tracking taints on a single host
(i.e., tracking information flow across processes) or applying
coarse features of network traffic that do not reflect any
semantics about the traffic itself (i.e., IP addresses and port
numbers). These approaches result in complex (and typically
imperfect) solutions because the mechanisms that are used
to control information flow are added to the network on
top of the existing infrastructure and at a limited number of
monitoring or control points, it may be difficult to guarantee
that information does not leak or propagate to unintended parts
of the network.

Instead, we argue that the policy for controlling information
flow should be integrated with the network layer itself. In
particular, As systems become increasingly distributed, host
and network-based mechanisms for controlling information
flow should be synthesized to enable the flow of information
to be tracked across the network. This mechanism would
allow network operators to not only control how information
propagates within and between networks, but also to devise
more complex traffic control policies; for example, it might
also be used to control which application traffic was allowed
on which part of the network. With the appropriate mechanism,
the information carried in the network traffic could also be
attributed to a specific user in the enterprise network, as
well as to a particular process. An operator could also use
such a mechanism to allow certain privileged users to move
information between different parts of the network (or between
networks).

B. Pedigree: Design and System Overview

Pedigree is a mechanism for tracking information flow in
networked systems by applying techniques from software taint
analysis and machine learning to network traffic. Pedigree
has two parts: A trusted tagger that resides on hosts and
tags packets with information about their provenance (i.e.,
identity and history of potential input from hosts and resources
for the process that generated them); and an arbiter, which

Fig. 3. Pedigree operation.

decides what to do with the traffic that carries certain tags.
Pedigree allows operators to write information flow policies
with expressive semantics that reflect properties of the actual
process and user that generated the traffic.

Figure 3 shows the basic Pedigree approach. Pedigree
tracks interactions between resources (i.e., files, processes,
and sockets) in an operating system and attributes persistent
tags to each resource. Pedigree annotates outgoing traffic with
tags. When a process sends data on the network, Pedigree’s
tagger annotates outgoing packets with a tag that represent the
provenance of a packet: essentially, the process that generated
the traffic and where it has taken input from. When a process
reads data from the network, the tagger updates the reading
process’s tags with tags on incoming packets. When a process
wants to send data across the network, it communicates via an
out-of-band control channel to the network controller, which
decides whether to allow the requested network flows based on
a network-wide policy. We are in the process of refining this
design and deploying it in realistic enterprise-network settings.

C. Research Challenges

The design, implementation, and deployment of Pedigree
entails many challenges. First, perhaps the most significant
challenge is how to specify and enforce policy. Network opera-
tors need some intuitive language for expressing policies about
how information should flow between various processes. Sec-
ond, tainting must occur at the appropriate granularity without
imposing unacceptable memory and performance overhead.
The granularity must be fine enough so that individual re-
sources can be tracked, and yet coarse enough to ensure that
the system can track all of the resources on the host. Third,
we must ensure that Pedigree imposes minimal overhead on
application performance and is secure enough to withstand
compromise and attack. Fourth, we must design the tags to fit
in a packet and yet still contain enough information to carry
meaningful semantics. We are grappling with many of these
issues as part of our current deployment efforts (Section IV).
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Fig. 4. Current testbed with connectivity between three buildings on the
Georgia Tech campus network.

IV. ONGOING DEPLOYMENT EFFORTS

We have deployed a testbed that supports our new network
designs in three buildings at Georgia Tech. Figure 4 shows
the current status of our deployment. The deployment is
a dedicated network that is physically separate from the
production network; it has its own IP prefix and upstream
connectivity. This platform allows us to develop and test
Resonance before deploying it on the production network. We
have both wireless and wired connectivity on the testbed. Our
current setup spans three buildings at Georgia Tech: Technol-
ogy Square Research Building (TSRB), Klaus Advanced Com-
puting Building (KACB) and College of Computing Building
(CCB). We have OpenFlow-enabled 48×1G switches from
three different vendors: NEC, Toroki, and HP. Switches from
Toroki are LB4G Quanta models with OpenFlow firmware
version 0.8.9. NEC and HP switches both have 0.8.9 versions
of the OpenFlow firmware. There is an access point in the
networking lab to support wireless communication. As of now,
the IP address space is currently taken from the GENI BGP-
Mux deployment [8], [16].

All buildings are connected to each other using the NEC
switch in CCB. Fiber paths connect both TSRB and KACB
directly to CCB. Currently, all users connect to the network
through the KACB building. In KACB, the OpenFlow-enabled
Quanta switch is present in the data closet in the third floor.
There are two connections coming out of the switch; one to the
NEC switch and the other to the controller, both in CCB. Other
ports on the Quanta switch are directly patched to ports in the
networking lab. These ports in networking lab serve as entry
points to the network. A wireless access point is connected to
one of them and facilitates wireless connection in the lab.

Because the Quanta switches only support out-of-band con-
figuration, we require a separate control path to the controller
from the switch. For this purpose, a separate virtual LAN
(VLAN) has been assigned from KACB to CCB, and from
TSRB to CCB. Controller in CCB and Quanta switches in
KACB and TSRB are part of this VLAN. All control traffic
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Fig. 5. Pedigree deployment in an enterprise network, where a malicious
host is trying to scan its local network.

including initial OpenFlow handshakes between the switches
and controller take place over this VLAN. Although out-of-
band configuration allows better segregation of control and
data traffic, yet for actual deployments such a configuration
becomes infeasible since it necessitates the existence of sepa-
rate VLAN paths from all switches in the entire network to the
controller. On the CCB side, we have placed all management
machines, including Web Portal machine, Controller machine
and the DHCP/DNS server machine in the CCB machine
room. All these management devices are connected directly
to NEC switch in same rack. Connectivity with TSRB is still
not fully functional. We have HP and Quanta switches in
TSRB which are yet to be connected to controller in CCB.
The RNOC switch, the gateway to the Internet for RNOC IP
subnet, is also situated in TSRB, is waiting to be put online
on the network.

A preliminary version of the Resonance system was demon-
strated at the GENI Engineering Conference (GEC7) [9], and
a preliminary version of Pedigree was demonstrated at ACM
SIGCOMM [14]. Figure 5 shows the setup of our demo. We
first set up many Pedigree-enabled end-hosts on a switched
network. The switch supports the OpenFlow [12] standard and
is capable of performing filtering decisions at high speed; this
switch and its controller (on a different end-host) comprise
Pedigree’s arbiter. While being used for testing and developing
these systems, the existing infrastructure can also be leveraged
by other research projects for their own deployment using
FlowVisor [1], which the ability to direct different control
traffic to different controllers.

The campus network was recently upgraded to include
approximately 275 switches that are capable of supporting
the OpenFlow firmware. One of the more significant practical
challenges in the campus deployment will be straining the
scalability of the system on a production network without
disrupting connectivity. For example, the proposed architecture
may involve installing many flow table entries in the switches,
which may either exhaust memory or slow lookup performance
if entries are not stored efficiently, or if state is not offloaded
to the controller. To address this concern, we will first stress-
test the design on the research testbed and subsequently the
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architecture on a smaller number of production switches before
completely rolling out the architecture.

V. RESEARCH CHALLENGES AND OPPORTUNITIES

With proof-of-concept implementations and deployments
of network systems that implement complex access control
and information-flow control policies, we plan to turn our
attention to how networks with a separate control framework
can support a broader class of applications. The trends in
our current research encourage us to reconsider the use of
other various existing mechanisms and approaches to network
design. In particular, the following general questions may pave
the way for significant breakthroughs in the way that network
operators configure their networks today:

Can network policy be decoupled from topology specifica-
tion? In today’s networks, operators use mechanisms such as
virtual LANs (VLANs) to enforce logical separation between
different parts of the network. Our work on designing access
control mechanisms for the Georgia Tech campus network has
shown that VLANs are typically too coarse of a mechanism
for specifying policies, and that topology specification is an
indirect way of implementing various policies.

How should complex network functions be factored between
hardware and software, and between network devices and
central control? As network policy begins to look less like
low-level configuration and more like a software that can
specify and implement complex logic, an important question
arises regarding how this logic should be factored across the
network infrastructure.

Conventionally, software has afforded operators and net-
work designers considerable flexibility at the cost of data-
plane forwarding performance. Recent advances, such as
OpenFlow [12] and programmable network hardware [2] have
begun to blur this distinction: OpenFlow permits software-
defined control at a centralized controller, and programmable
network hardware facilitates flexible processing of traffic in the
data plane. This increased function creates the possibility of
factoring complex logic between on-device network hardware,
on-device “software exceptions”, and centralized control. How
various functions should be factored—and how this factoring
should be specified—remains an open question.

Can software engineering and testing techniques play a
role in improving the predictability, reliability, or security of
networks? The software engineering and programming lan-
guages communities have spent considerable effort developing
methods and techniques for testing the correctness of software
programs. Software engineers face a problem of determining
whether the a particular program will behave “correctly”, often
without a precise notion of what it means to be correct.
Network operators face a very similar problem in configuring
their networks.

Our research points to a trend where network policies look
less like low-level configurations to instantiations and more
like software programs. This trend may make various ideas
from software testing (e.g., differential testing [13]) more
directly applicable. Similarly, programming languages that
help programmers more directly reason about the correctness

of a program’s behavior may also help operators better reason
about the complex behavior of networked systems.
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