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Abstract
We present a novel network-level behavioral malware
clustering system. We focus on the analysis of struc-
tural similarities among malicious HTTP traffic traces
generated by executing HTTP-based malware. Our work
is motivated by the need to provide quality input to al-
gorithms that automatically generate network signatures.
Accordingly, we define similarity metrics among HTTP
traces and develop our system so that the resulting clus-
ters can yield high quality malware signatures.

We implemented a proof-of-concept version of our
network-level malware clustering system and performed
experiments with more than 25,000 distinct malware
samples. Results from our evaluation, which includes
real-world deployment, confirm the effectiveness of the
proposed clustering system and show that our approach
can aid the process of automatically extracting net-
work signatures for detecting HTTP traffic generated by
malware-compromised machines.

1 Introduction
The battle against malicious software (a.k.a. malware)

is becoming harder and harder. Today’s malware writers
commonly use executable packing [16] and other code
obfuscation techniques to generate a large number of
polymorphic variants of the same malware. As a con-
sequence, anti-viruses (AVs) have a hard time keeping
their signature database up to date, and their AV scan-
ners often suffer from a high rate of false negatives [26].

Although it is very easy to create numerous polymor-
phic variants of a given malware sample, different vari-
ants of the same malware will exhibit similar malicious
activities, when executed. Behavioral malware clustering
aims at grouping malware variants according to similar-
ities in their malicious behavior. This process is particu-
larly useful because once a number of different variants
of the same malware have been identified and grouped
together, it is easier to write a generic behavioral signa-

ture that can be used to detect future malware variants
with low false positives and false negatives.

Network-level signatures have some attractive proper-
ties compared to system-level signatures. For example,
enforcing system-level behavioral signatures often re-
quires the use of virtualized environments and expensive
dynamic analysis [21, 34]. On the other hand, network-
level signatures are usually easier to deploy because we
can take advantage of existing network monitoring in-
frastructures (e.g., intrusion detection systems and alert
monitoring tools), and monitor a large number of ma-
chines without introducing overhead at the end hosts.

The vast majority of malware need a network con-
nection in order to perpetrate their malicious activities
(e.g., sending spam, exfiltrating private data, download-
ing malware updates, etc.). In this paper, we focus on
the network-level behavioral clustering of HTTP-based
malware, namely, malware that use the HTTP protocol
as their main means of communicating with the attacker
or perpetrating their malicious intents.

HTTP-based malware is becoming more and more
prevalent. For example, according to [20] the majority
of spam botnets use HTTP to communicate with their
command and control (C&C) server. Also, from our own
malware database we actually found that among the mal-
ware samples that show network activities, about 75% of
them generate some HTTP traffic. In addition, there is
evidence that Web-based “reusable” kits (or platforms)
for remote command of malware, and in particular bot-
nets, are available for sale on the Internet [14] (e.g., the
C&C Web kit for Zeus bots can be currently purchased
for about $700 [8]).

Given a large dataset of malware samples and the ma-
licious HTTP traffic they generate, our network-level be-
havioral clustering system aims at unveiling similarities
(or relationships) among malware samples that may not
be captured by current system-level behavioral clustering
systems [9, 10], thus offering a new point of view and
valuable information to malware analysts. Unlike pre-
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vious work on behavioral malware clustering, our work
is motivated by the need to provide quality input to al-
gorithms that automatically generate network signatures.
Accordingly, we define similarity metrics among HTTP
traffic traces and develop our clustering system so that
the resulting clusters can yield high quality malware sig-
natures. Namely, after clustering is completed, the HTTP
traffic generated by malware samples in the same cluster
can be processed by an automatic signature generation
tool, in order to extract network signatures that model the
HTTP behavior of all the malware variants in that cluster.
An Intrusion Detection System (IDS) located at the edge
of a network can in turn deploy such network signatures
to detect malware-related outbound HTTP requests.

The main contributions of this paper are as follows:
• We propose a novel, network-level behavioral mal-

ware clustering system based on the analysis of
structural similarities among malicious HTTP traf-
fic traces generated by different malware samples.
• We introduce a new automated method for ana-

lyzing the results of behavioral malware clustering
based on a comparison with family names assigned
to the malware samples by multiple AVs.
• We show that the proposed system enables accurate

and efficient automatic generation of network-level
malware signatures, which can complement tradi-
tional AVs and other defense techniques.
• We implemented a proof-of-concept version of our

malware clustering system, and performed experi-
ments with more than 25,000 malware samples. Re-
sults from our evaluation, which includes real-world
deployment, confirm the effectiveness of the pro-
posed clustering system.

2 Related Work
System-level behavioral malware clustering has been

recently studied in [9, 10]. In particular, Bayer et al. [10]
proposed a scalable malware clustering algorithm based
on malware behavior expressed in terms of detailed sys-
tem events. However, the network information they use
is limited to high-level features such as the names of
downloaded files, the type of protocol, and the domain
name of the server. Our work is different because we fo-
cus on the malicious HTTP traffic traces generated by ex-
ecuting different malware samples. We extract detailed
information from the network traces, such as the num-
ber and type of HTTP queries, the length and structural
similarities among URLs, the length of data sent and re-
ceived from the HTTP server, etc. Compared with [10],
we do not consider the specific TCP port and domain
names used by the malware. This is motivated by the fact
that we aim to group together malware variants that may
contact different web servers (e.g., because they are con-
trolled by a different attacker), and may or may not use

an HTTP proxy (whereby the TCP port used may vary),
but have strong similarities in terms of the structure and
sequence of the HTTP queries they perform (e.g., be-
cause they rely on the same C&C Web kit). Also, dif-
ferently from [10], we develop our behavioral clustering
algorithm so that the results can be used to automatically
generate network signatures for detecting malicious net-
work activities, as opposed to system-level signatures.

Automatic generation of network signatures has been
explored in [23, 24, 29, 32, 33], for example. Most
of these studies focused mainly on worm fingerprinting.
Different approaches have been proposed to deal with
generating signatures from a dataset of network flows
related to the propagation of different worms. In par-
ticular, Polygraph [24] applies clustering techniques to
try to separate worm flows belonging to different worms,
before generating the signatures. However, Polygraph’s
clustering algorithm is greedy [24], and rapidly becomes
prohibitively expensive when dealing with the high num-
ber of malicious flows generated by a large dataset of
different types of malware, as we will discuss in Sec-
tion 6.2. Since behavioral malware clustering aims at
efficiently clustering large datasets of different malware
samples (including Bots, Adware, Spyware, etc., beside
Worms), the clustering approaches proposed for worm
fingerprinting are not suitable for this task. Compared
with [24] and other previous work on worm fingerprint-
ing, we focus on clustering of different types of HTTP-
based malware (not only worms) in an efficient manner.

BotMiner [15], an anomaly-based botnet detection
system, applies clustering of network flows to detect
the presence of bot-compromised machines within en-
terprise networks. BotMiner uses high-level statistics for
clustering network flows, and is limited to detecting bot-
nets. On the other hand, in this paper we focus on the
behavioral clustering of generic malware samples based
on structural similarities among their HTTP traffic traces,
and on modeling the network behavior of the discovered
malware families by extracting network-level malware
detection signatures.

3 HTTP-Based Behavioral Clustering
The objective of our system is to find groups of mal-

ware that interact with the Web in a similar way, learn
a network behavior model for each group (or family) of
malware, and then use such models to detect the pres-
ence of malware-compromised machines in a monitored
network. Towards this end, we first perform behavioral
clustering of malware samples by finding structural sim-
ilarities between the sequences of HTTP requests gen-
erated as a consequence of infection. Namely, given a
dataset of malware samplesM = {m(i)}i=1..N , we ex-
ecute each sample m(i) in a controlled environment sim-
ilar to BotLab [20] for a time T , and we store its HTTP
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Figure 1: Overview of our HTTP-based behavioral malware clustering system.

traffic trace H(m(i)). We then partitionM into clusters
according to a definition of structural similarity among
the HTTP traffic traces H(m(i)), i = 1, .., N .

3.1 System Overview
In order to attain high quality clusters and decrease the

computational cost of clustering, we adopt a multistep
cluster refinement process, as shown in Figure 1:

• Coarse-grained Clustering: In this phase, we clus-
ter malware samples based on simple statistical fea-
tures extracted from their malicious HTTP traffic.
We measure features such as the total number of
HTTP requests the malware generated, the number
of GET and POST requests, the average length of
the URLs, etc. Therefore, computing the distance
between pairs of malware samples reduces to com-
puting the distance between (short) vectors of num-
bers, which can be done efficiently.

• Fine-grained Clustering: After splitting the col-
lected malware set into relatively large (coarse-
grain) clusters, we further split each cluster into
smaller groups. To this end, we consider each
coarse-grained cluster as a separate malware set,
measure the structural similarity between the HTTP
traffic generated by each sample in a cluster, and
apply fine-grained clustering. This allows us to
separate malware that have similar statistical traf-
fic characteristics (thus causing them to fall in the
same coarse-grained cluster), but that present dif-
ferent structures of their HTTP queries. Measuring
the structural similarity between pairs of HTTP traf-
fic traces is relatively expensive. Since each coarse-
grained cluster is much smaller than the total num-
ber of samples N , fine-grained clustering can be
done more efficiently than by applying it directly
on the entire malware dataset.

• Cluster Merging: The fine-grained clustering tends
to produce tight clusters of malware that have very
similar network behavior. However, one of our ob-
jectives is to derive generic behavior models that
can be used to detect the network behavior of a large
number of current and future malware samples. In
order to achieve this goal, after fine-grained cluster-
ing we perform a further refinement step in which

we try to merge together clusters of malware that
have similar enough HTTP behavior, but that have
been split by the fine-grained clustering process. In
practice, given a set of fine-grained malware clus-
ters, for each of them we define a cluster centroid
as a set of network signatures that “summarize” the
HTTP traffic generated by the malware samples in
a cluster. We then measure the similarity between
pairs of cluster centroids, and merge fine-grained
clusters whose centroids are close to each other.

The combination of coarse-grained and fine-grained
clustering allows us to decrease the computational cost
of the clustering process, compared to using only fine-
grained clustering. Furthermore, the cluster merging pro-
cess allows us to attain more generic network-level mal-
ware signatures, thus increasing the malware detection
rate (see Section 6.2). These observations motivate the
use of our three-step clustering process.

In all the three phases of our clustering system, we ap-
ply single-linkage hierarchical clustering [19]. The main
motivations for this choice are the fact that the hierar-
chical clustering algorithm is able to find clusters of ar-
bitrary shapes, and can work on arbitrary metric spaces
(i.e., it is not limited to distance in the Euclidean space).
We ran pilot experiments using other clustering algo-
rithms (e.g., X-means [27] for the coarse-grained cluster-
ing, and complete-linkage hierarchical clustering [19]).
The single-linkage hierarchical clustering performed the
best, according to our analysis.

The hierarchical clustering algorithm takes a matrix of
pair-wise distances among objects as input and produces
in output a dendrogram, i.e., a tree-like data structure in
which the leaves represent the original objects, and the
length of the edges represent the distance between clus-
ters [18]. Choosing the best clustering involves a cluster
validity analysis to find the dendrogram cut that produces
the most compact and well separated clusters. In order
to automatically find the best dendrogram cut we apply
the Davies-Bouldin (DB) cluster validity index [17]. We
now describe our clustering system more in detail.

3.2 Coarse-grained Clustering
The goal of coarse-grained clustering is to find sim-

ple statistical similarities in the way different malware
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samples interact with the Web. LetM = {m(i)}i=1..N

be a set of malware samples, and H(m(i)) be the HTTP
traffic trace obtained by executing a malware m(i) ∈ M
for a given time T . We translate each trace H(m(i)) into
a pattern vector v(i) containing the following statistical
features to model how each malware uses the Web:

1. Total number of HTTP requests
2. Number of GET requests
3. Number of POST requests
4. Average length of the URLs
5. Average number of parameters in the request
6. Average amount of data sent by POST requests
7. Average response length

Since the range of different features in the pattern vectors
are quite different, we first standardize the dataset so that
the features will have mean equal to zero and variance
equal to one, and then we apply the Euclidian distance.
We partition the set M into coarse-grained clusters by
applying the single-linkage hierarchical clustering algo-
rithm and DB index [17] cluster validity analysis.

3.3 Fine-grained Clustering
In the fine-grained clustering step we consider the

structural similarity among sequences of HTTP requests
(as opposed to the statistical similarity used for coarse-
grained clustering). Our objective is to group together
malware that interact with Web applications in a simi-
lar way. For example, we want to group together bots
that rely on the same Web-based C&C application. Our
approach is based on the observation that two different
malware samples that rely on the same Web server appli-
cation will query URLs structured in a similar way, and
in a similar sequence. In order to capture these similar-
ities, we first define a measure of distance between two
HTTP requests rk and rh generated by two different mal-
ware samples. Consider Figure 2, where m, p, n, and v,
represent different parts of an HTTP request:
• m represents the request method (e.g., GET, POST,

HEADER, etc.). We define a distance function
dm(rk, rh) that is equal to 0 if the requests rk, and
rh both use the same method (e.g, both are GET
requests), otherwise it is equal to 1.
• p stands for page, namely the first part of the URL

that includes the path and page name, but does not
include the parameters. We define dp(rk, rh) to be
equal to the normalized Levenshtein distance1 be-
tween the strings related to the path and pages that
appear in the two requests rk and rh.
• n represents the set of parameter names (i.e., n =
{id, version, cc} in the example in Figure 2). We

1The normalized Levenshtein distance between two strings s1 and
s2 (also known as edit distance) is equal to the minimum number of
character operations (insert, delete, or replace) needed to transform one
string into the other, divided by max(length(s1), length(s2)).

Figure 2: Structure of an HTTP request used in fine-
grained clustering. m=Method; p=Page; n=Parameter Names;
v=Parameter Values.

define dn(rk, rh) as the Jaccard distance2 between
the sets of parameters names in the two requests.
• v is the set of parameter values. We define
dv(rk, rh) to be equal to the normalized Leven-
shtein distance between strings obtained by con-
catenating the parameter values (e.g., 0011.0US).

We define the overall distance between two HTTP re-
quests as

dr(rk, rh) =wm · dm(rk, rh) + wp · dp(rk, rh)

+wn · dn(rk, rh) + wv · dv(rk, rh)
(1)

where the factors wx, x ∈ {m, p, n, v} are predefined
weights (the actual value assigned to the weights wx are
discussed in Section 6) that give more importance to the
distance between the request methods and pages, for ex-
ample, and less weight to the distance between parameter
values. We then define the fine-grain distance between
two malware samples as the average minimum distance
between sequences of HTTP requests from the two sam-
ples, and apply the single-linkage hierarchical cluster-
ing algorithm and the DB cluster validity index [17] to
split each coarse-grained cluster into fine-grained clus-
ters (we only split coarse-grained clusters whose diame-
ter is larger than a predefined threshold θ = 0.1).

3.4 Cluster Merging
Fine-grained clustering tends to produce tight clus-

ters, which yield very specific malware signatures. How-
ever, our objective is to derive generic malware signa-
tures which can be used to detect as many future malware
variants as possible, while maintaining a very low false
positive rate. Towards this end, we apply a further refine-
ment step in which we merge together fine-grained clus-
ters of malware variants that behave similarly enough, in
terms of the HTTP traffic they generate. For each fine-
grained malware cluster we compute a cluster centroid,
which summarizes the HTTP requests performed by the
malware samples in a cluster, and then we define a mea-
sure of distance among centroids (and therefore among
clusters). The cluster merging phase can be seen as a
meta-clustering step in which we find groups of malware
clusters that are very close to each other, and we merge
them to form bigger clusters.

Cluster Centroids Let Ci be a cluster of malware
samples, and Hi = {H(m(i)

k )}k=1..ci
the related set of

2The Jaccard distance between two sets A and B is defined as
J(A,B) = 1− |A∩B|

|A∪B|
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Figure 3: Example of network signature (a), and its plain text
version (b).

HTTP traffic traces obtained by executing each malware
sample in Ci. We define the centroid of Ci as a set
Si = {sj}j=1..li of network signatures. Each signature
sj is extracted from a pool pj of HTTP requests selected
from the traffic traces in Hi. We first describe the algo-
rithm used for creating the set of HTTP request pools,
and then we describe how the signatures are extracted
from the obtained pools.

In order to create a set Pi of request pools, we first
randomly select one of the malware samples in cluster
Ci to be our centroid seed. Assume we pick m(i)

h for
this purpose. We then consider the set of HTTP requests
in the HTTP traffic trace H(m(i)

h ) = {rj}j=1..li . We
initialize the pool set Pi by putting each request rj in
a different (until now empty) pool pj . Now, using the
definition of distance between HTTP requests in Equa-
tion 1, for each request rj ∈ H(m(i)

h ) we find the clos-
est request r′k ∈ H(m(i)

g ) from another malware sample
m

(i)
g ∈ Ci, and we add r′k to the pool pj . We repeat this

for all the malware m(i)
g ∈ Ci, g 6= h. After this pro-

cess is complete, and pool pj has been filled with HTTP
requests, we reiterate the same process to construct pool
pj′ 6=j starting from request rj′ ∈ H(m(i)

h ), until all pools
pj , j = 1, .., li have been filled.

Once the pools have been filled with HTTP requests,
we extract a signature sj from each pool pj ∈ Pi using
the Token-Subsequences algorithm implemented in [24]
(Token-Subsequences signatures can be easily translated
into Snort signatures). Since the signature generation al-
gorithm itself is not a contribution of this paper, we re-
fer the reader to [24] for more details on how the Token
Subsequences signatures are actually generated. Here it
is sufficient to notice that a Token Subsequences signa-
ture is an ordered list of invariant tokens, i.e, substrings
that are in common to all the requests in a request pool
p. Therefore, a signature sj can be written as a regu-
lar expression of the kind t1.*t2.*...*tn, where
the t’s are invariant tokens that are common to all the
requests in the pool pj . We consider only the first part
of each HTTP request for signature generation purposes,
namely, the request method and URL (see Figure 3a).
Meta-Clustering Once a centroid has been computed

for each fine-grained cluster, we can compute the dis-
tance between pairs of centroids d(Si,Sj),. We first de-
fine the distance between pairs of signatures, and then
we extend this definition to consider sets of signatures.
Let si be a signature, and s′j be a plain text concate-
nation of the invariant tokens in signature sj . For ex-

ample, t1t2t3 is a plain text version of the signature
t1.*t2.*t3 (see Figure 3 for a concrete example).
We define the distance between two signatures as

d(si, sj) =
agrep(si, s

′
j)

length(s′i)
∈ [0, 1] (2)

where agrep(si, s
′
j) is a function that performs approxi-

mate matching of regular expression [31] of the signature
si on the string s′j , and returns the number of matching
errors. In practice, d(si, sj) is equal to zero when si per-
fectly “covers” (i.e., is more generic than) sj , and tends
to one when signatures si and sj are more and more dif-
ferent.

Given the above definition of distance between signa-
tures, we define the distance between two centroids (i.e.,
two clusters) as the minimum average distance between
two sets of signatures3. It is worth noting that when
computing the distance between two centroids, we only
consider those signatures sk for which length(s′k) > λ.
Here s′k is again the plain text version of sk, length(s′k)
is the length of the string s′k, and λ is a predefined length
threshold. The threshold λ is chosen to avoid apply-
ing the agrep function on short, and therefore likely
too generic, signatures that would match most HTTP re-
quests (e.g., sk = GET /.*), thus artificially skewing
the distance value towards zero.

We then apply again the hierarchical clustering algo-
rithm in combination with the DB validity index [17] to
find groups of clusters (or meta-clusters) that are close to
each other and should therefore be merged.

4 Network Signatures
The cluster merging step described in Section 3.4 rep-

resents the last phase of our behavioral clustering pro-
cess, and its output represents the final partitioning of
the original malware setM = {m(i)}i=1..N into groups
of malware that share similar HTTP behavior. Now, for
each of the final output clusters C′i, i = 1, .., c, we can
compute an “updated” centroid signature set S′i using the
same algorithm described in Section 3.4 for computing
cluster centroids. The signature set S′i can then be de-
ployed into an IDS at the edge of a network in order to
detect malicious HTTP requests, which are a symptom
of malware infection.

It is important to notice that some malware samples
may contact legitimate websites for malicious purposes.
For example some botnets use facebook or twitter
for C&C [3]. In order to decrease the possibility of false
positives, one may be tempted to prefilter all the HTTP
requests sent by malware samples against well known,

3Formally
d(Si,Sj) = min

n
1
li

P
i minj{d(si, sj)}, 1

lj

P
j mini{d(sj , si)}

o
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legitimate websites before generating the network sig-
natures. However, prefiltering all the HTTP requests
against these websites may not be a good idea, because
we may discard HTTP requests that, although “served”
by legitimate websites, are very specific to certain mal-
ware families and whose related network signatures may
yield a high detection rate with low false positives. In
order to solve this problem, instead of prefiltering HTTP
traffic against legitimate websites, we apply a signature
pruning process. Namely, we test the signature set S′i
against a large dataset of legitimate traffic and discard
the signatures that generate false positives.

5 Cluster Validity Analysis
Clustering can be viewed as an unsupervised learning

task, and analyzing the validity of the clustering results is
intrinsically hard. Cluster validity analysis often involves
the use of a subjective criterion of optimality [19], which
is specific to a particular application. Therefore, no stan-
dard way exists of validating the output of a clustering
procedure [19]. As discussed in Section 3, we make use
of the DB validity index [17] in all the phases of our mal-
ware clustering process to automatically choose the best
possible partitioning of the malware dataset. However,
it is also desirable to analyze the clustering results by
quantifying the level of agreement between the obtained
clusters and the information about the clustered malware
samples given by different AV vendors, for example.

In [10], Bayer et al. proposed to use precision and
recall (which are widely used in text classification prob-
lems, for example, but not as often for cluster validity
analysis) to compare the results of their system-level be-
havioral clustering system to a reference clustering. As
noted in [10], generating such reference clustering is not
easy because the labels assigned by different AV scan-
ners to variants of the same malware family are seldom
consistent. This required the authors of [10] to define a
mapping between labels assigned by different AVs.

We propose a new approach for automatically analyz-
ing the validity of malware clustering results, which does
not require any manual mapping of AV labels. Our ap-
proach is based on a measure of the cohesion (or com-
pactness) of each cluster, and the separation among dif-
ferent clusters. We measure both cohesion and separa-
tion in terms of the agreement between the labels as-
signed to the malware samples in a cluster by multiple
AV scanners. It is worth noting, though, that since the AV
labels themselves are not always consistent (as observed
in [9, 10]), our measures of cluster cohesion and separa-
tion give us an indication of the validity of the clustering
results, rather than being an oracle. However, we devised
our cluster cohesion and separation indices to mitigate
possible inconsistencies among AV labels.

AV Label Graphs Before describing how cluster co-
hesion and separation are measured, we need to intro-
duce the notion of AV label graph. We introduce AV
label graphs to mitigate the effects of the inconsistency
of AV labels, and to map the problem of measuring the
cohesion (or compactness) and separation of clusters in
terms of easier-to-handle graph-based indices. We first
start with an example to show how to construct the AV
label graph given a cluster of malware samples. We then
provide a more formal definition.

Consider the example of malware cluster in Figure 4-
a, which contains eight malware samples (one per line).
Each line reports the MD5 hash of a malware sample,
and the AV labels assigned to the sample by three dif-
ferent AV scanners (McAfee [4], Avira [1], and Trend
Micro [7]). From this malware cluster we construct an
AV label graph as follows:

1. Create a node in the graph for each distinct AV
malware family label (we identify a malware fam-
ily label by extracting the first AV label substring
that ends with a ‘.’ character). For example (see
Figure 4-b), the first malware sample is classi-
fied as belonging to the W32/Virut family by
McAfee, WORM/Rbot by Avira, and PE VIRUT
by Trend Micro. Therefore we create three
nodes in the graph called McAfee W32 Virut,
Avira WORM Rbot, and Trend PE VIRUT (in
case a malware sample is not detected by an AV
scanner, we map it to a special null label).

2. Once all the nodes have been created, we connect
them using weighted edges. We connect two nodes
with an edge only if the related two malware family
labels (i.e., the name of the nodes) appear together
in at least one of the lines in Figure 4-a.

3. A weight equal to 1 − m
n is assigned to each edge,

where m represents the number of times the two
malware family labels connected by the edge have
appeared on the same line in the cluster (i.e., for the
same malware sample), and n is the total number of
samples in the cluster (n = 8 in this example).

As we can see from Figure 4-b, the nodes
McAfee W32 Virut and Trend PE VIRUT are
connected by an edge with weight equal to zero. This is
because both McAfee and Trend Micro consistently clas-
sify each malware sample in the cluster as W32/Virut
and PE VIRUT, respectively (i.e., m = n). On the other
hand, the edge between nodes McAfee W32 Virut
and Avira W32 Virut, for example, was assigned a
weight equal to 0.625 because in this case m = 3. We
now define AV label graphs more formally.

Definition 1 - AV Label Graph. An AV label graph
is an undirected weighted graph. Given a malware
cluster Ci = {m(i)

k }k=1..ci
, let Γi = {L1 =
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(a) Malware Cluster

McAfee_W32_Virut

Avira_WORM_Rbot

0.375

Trend_PE_VIRUT

0 Avira_W32_Virut

0.625

0.375 0.625

(b) AV Label Graph
Figure 4: Example of Malware Cluster (a) and related AV Label Graph (b). Each malware sample (identified by its MD5 hash) is labeled
using three different AV scanners, namely McAfee (m), Avira (a), and Trend Micro (t).

(l1, .., lv)1, .., Lci
= (l1, .., lv)ci

} be a set of label vec-
tors, where label vector Lh = (l1, .., lv)h is the set of
malware family labels assigned by v different AV scan-
ners to malware m

(i)
h ∈ Ci. The AV label graph

Gi = {V (i)
k , E

(i)
k1,k2
}k=1..l is constructed by adding a

node V (i)
k for each distinct malware family label lk ∈ Γi.

Two nodes V (i)
k1

and V (i)
k2

are connected by a weighted

edge E(i)
k1,k2

only if the malware family labels lk1 and lk2

related to the two nodes appear at least once in the same
label vector Lh ∈ Γi. Each edge E(i)

k1,k2
is assigned a

weight w = 1 − m
ci

, where m is equal to the number of
label vectors Lh ∈ Γi containing both lk1 and lk2 , and
ci is the number of malware samples in Ci.

Cluster Cohesion and Separation Now that we have
defined AV label graphs, we can formally define cluster
cohesion and separation in terms of AV labels.

Definition 2 - Cohesion Index. Given a cluster Ci, let
Gi = {V (i)

k , E
(i)
k1,k2
}k=1..l be its AV label graph, and

δl1,l2 be the shortest path between two nodes V (i)
l1

and

V
(i)
l2

in Gi. If no path exists between the two nodes,
the distance δl1,l2 is assumed to be equal to a constant
“gap” γ � sup(wk1,k2), where wk1,k2 is the weight of a
generic edge E(i)

k1,k2
∈ Gi. The cohesion index of cluster

Ci is defined as

C(Ci) = 1−
1

γ

2

n · v(n · v − 1)

X
l1<l2

δl1,l2

where n is the number of malware samples in the cluster,
and v is the number of different AV scanners.

According to our definition of AV label graph,
sup(wk1,k2) = 1, and we set γ = 10. In practice,
the cohesion index C(Ci) ∈ (0, 1] will be equal to one
when each AV scanner consistently assigns the same
malware family label to each of the malware samples
in cluster Ci. On the other hand the cohesion index
will tend to zero if each AV scanner assigns different
malware family labels to each of the malware samples
in the cluster. For example, the graph in Figure 4-b
has a cohesion index equal to 0.999. The cohesion in-
dex is very high thanks to the fact that both McAfee

and Trend Micro consistently assign the same family
label to all the samples in the cluster. If Avira also
consistently assigned the same family label to all the
samples (either always Avira W32 Virut or always
Avira W32 Rbot), the cohesion index would be equal
to one. As we can see, regardless of the inconsistency in
Avira’s labels, thanks to the fact that we use multiple AV
scanners and we leverage the notion of AV label graphs,
we can correctly consider the cluster in Figure 4-a as very
compact, thus confirming the validity of the behavioral
clustering process.

Definition 3 - Separation Index. Given two clusters Ci

and Cj and their respective label graphs Gi and Gj , let
Cij be the cluster obtained by merging Ci and Cj , and
Gij be its label graph. By definition, Gij will contain all
the nodes V (i)

k ∈ Gi and V (j)
h ∈ Gj . The separation

index between Ci and Cj is defined as

S(Ci,Cj) =
1

γ
avgk,h{∆(V

(i)
k , V

(j)
h )}

where ∆(V (i)
k , V

(j)
h ) is the shortest path in Gij between

nodes V (i)
k and V (j)

h , and γ is the “gap” introduced in
Definition 2.

In practice, the separation index takes values in the
interval [0, 1]. S(Ci,Cj) will be equal to zero if the
malware samples in clusters Ci and Cj are all consis-
tently labeled by each AV scanner as belonging to the
same malware family. Higher values of the separation
index indicate that the malware samples in Ci and Cj

are more and more diverse in term of malware family la-
bels, and are perfectly separated (i.e., S(Ci,Cj) = 1)
when no intersection exists between the malware family
labels assigned to malware samples in Ci, and the ones
assigned to malware samples in Cj .

6 Experiments
6.1 HTTP-based Behavioral Clustering
Malware Dataset Our malware dataset consists of

25,720 distinct (no duplicates) malware samples, each of
which generates at least one HTTP request when exe-
cuted on a victim machine. We collected our malware
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Malware Samples Number of Clusters Processing Time
dataset samples undetected by all AVs undetected by best AV coarse fine meta coarse fine meta+sig
Feb09 4,758 208 (4.4%) 327 (6.9%) 2,538 2,660 1,499 34min 22min 6h55min
Mar09 3,563 252 (7.1%) 302 (8.6%) 2,160 2,196 1,779 19min 3min 1h3min
Apr09 2,274 142 (6.2%) 175 (7.7%) 1,325 1,330 1,167 8min 5min 28min
May09 4,861 997 (20.5%) 1,127 (23.2%) 3,339 3,423 2,593 56min 8min 2h52min
Jun09 4,677 1,038 (22.2%) 1,164 (24.9%) 3,304 3,344 2,537 57min 3min 37min
Jul09 5,587 1,569 (28.1%) 1,665 (29.8%) 3,358 3,390 2,724 1h5min 5min 2h22min

Table 1: Summary of Clustering Results (column meta+sig includes the meta-clustering and signature extraction processing time).

samples in a period of six months, from February to July
2009, from a number of different malware sources such
as MWCollect [2], Malfease [5], and commercial mal-
ware feeds. Table 1 (first and second column), shows
the number of distinct malware samples collected in each
month. Similar to previous works that rely on an analy-
sis of malware beahavior [9, 10, 20], we executed each
sample in a controlled environment for a period T = 5
minutes, during which we recorded the HTTP traffic to
be used for our behavioral clustering (see Section 3).
Also, in order to perform cluster analysis based on AV
labels, as described in Section 5, we scanned each mal-
ware sample with three commercial AV scanners, namely
McAfee [4], Avira [1], and Trend Micro [7]. As we can
see from Table 1 (third and fourth column), each of our
datasets contain a number of malware samples which are
not detected by any of our AV scanners. In addition, the
number of undetected samples grew significantly during
the last few months, for both the combination of the three
scanners, and for the single best AV (i.e., the AV scan-
ner that overall detected the highest number of samples).
This is justified by the fact that we scanned all the bina-
ries in August 2009 using the most recent AV signatures.
Therefore, AV companies had enough time to generate
signatures for most malware collected in February, for
example, but evidently not enough time to generate sig-
natures for many of the more recent malware samples.
Given the rapid pace at which new malware samples are
created [30], and since it may take months in some cases
for AV vendors to collect a specific malware variant and
generate traditional detection signatures for it, this result
was somewhat expected and is in accordance with the
results reported in [26].

Experimental Setup We implemented a proof-of-
concept version of our behavioral clustering system (see
Section 3), which consists of a little over 2,000 lines of
Java code. We set the weights defined in Equation 1 (as
explained in Section 3.3) to wm = 10, wp = 8, wn = 3,
and wv = 1. The minimum signature length λ used to
compute the distance between cluster centroids (see Sec-
tion 3.4) was set to λ = 10. In order to perform fine- and
meta-clustering (see Section 3.4), we considered the first
10 HTTP requests generated by each malware sample
during execution. We performed approximate matching
of regular expressions (see agrep function in Section 3.4)
using the TRE library [22]. All the experiments were per-
formed on a 4-core 2.67GHz Intel Core-i7 machine with

12GB of RAM, though we never used more than 2 cores
and 8GB of RAM for each experiment run.

Clustering Results We applied our behavioral clus-
tering algorithm to the malware samples collected in
each of the six months of observation. Table 1 summa-
rizes our clustering results, and reports the number of
clusters produced by each of the clustering refinement
steps, i.e., corse-grain, fine-grain, and meta-clustering
(see Section 3). For example, in February 2009 we
collected 4,758 distinct malware samples. The coarse-
grained clustering step grouped them into 2,538 clus-
ters, the fine-grained clustering further split some of
these clusters to generate a total of 2,660 clusters, and
the meta-clustering process found that some of the fine-
grained clusters could be merged to produce a final num-
ber of 1,499 (meta-)clusters. Table 1 also reports the
time needed to complete each step of our clustering pro-
cess. The most expensive step is almost always the meta-
clustering (see Section 3.4). This is due to the fact that
in order to measure the distance between centroids we
need to use the agrep function for approximate matching
of regular expressions, which is relatively expensive to
compute. However, it is worth noting that computing the
clusters for one month worth of HTTP-based malware
takes only a few hours of processing. The variability in
clustering time is due to the different number of samples
per month, and by the different amount of HTTP traffic
they generated during execution. Further optimizations
of our clustering system are left as future work.

Table 7 (first and second row) shows, for each month,
the number of clusters and the clustering time obtained
by directly applying the fine-grained clustering step
alone to our malware datasets (we will explain the mean-
ing of the last row of Table 7 later in Section 6.2). We can
see from Table 1 that the combination of coarse-grained
and fine-grained clustering requires a lower computation
time, compared to applying fine-grained clustering by
itself. For example, according to Table 1, computing
the coarse-grained clusters first and then refining the re-
sults using fine-grained clustering on the Feb09 dataset
takes 56 minutes. On the other hand, according to Ta-
ble 7, applying fine-grained clustering directly on Feb09
requires more than 4 hours. Furthermore, although ap-
plying fine-grained clustering by itself requires less time
than our three-step clustering approach (which includes
meta-clustering) for three out of six datasets, our three-
step clustering yields better signatures and a higher mal-
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Figure 5: Distribution of cluster co-
hesion and separation (Feb09).

v
1
 = 076b81e8c6622e9c6a94426e8c2dfe33

AV Labels = Generic FakeAlert.h [McAfee];  
                    TR/Dropper.Gen [Avira]

HTTP Traffic

[1249356561 192.168.14.2:1037 => 94.247.2.193:80]
POST /cgi-bin/generator HTTP/1.0
Content-Length: 45
[... DATA ...]

[1249356562 192.168.14.2:1038 => 94.247.2.193:80]
POST /extra.php HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 44
[... DATA ...]

File System Operations

Delete c:\docume~1\admini~1\locals~1\temp\tmp1.tmp
Read   \\?\globalroot\systemroot\system32\msvcrt.dll
Write   c:\docume~1\admini~1\locals~1\temp\tmp1.tmp

(a) Variant 1

v
2
 = 7ee251d8d13ed32914a4e39740b91ae2

AV Labels = DR/PCK.Tdss.A.21 [Avira]

HTTP Traffic

[1249345674 192.168.12.2:1034 => 94.247.2.193:80]
POST /cgi-bin/generator HTTP/1.0
Content-Length: 45
[... DATA ...]

[1249345674 192.168.12.2:1038 => 94.247.2.193:80]
POST /extra.php HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 44
[... DATA …]

File System Operations

Delete c:\docume~1\admini~1\locals~1\temp\tmp4.tmp
Delete c:\docume~1\admini~1\locals~1\temp\tmp5.tmp
Write   c:\docume~1\admini~1\locals~1\temp\tmp5.tmp
Read   \\?\globalroot\systemroot\system32\advapi32.dll
Write   c:\docume~1\admini~1\locals~1\temp\tmp4.tmp
Write   c:\docume~1\admini~1\locals~1\temp\nso3.tmp\modern-header.bmp
Delete c:\docume~1\admini~1\locals~1\temp\nso3.tmp
Write   c:\docume~1\admini~1\locals~1\temp\matrix329411.exe
Read   (MALWARE_PATH)
Delete c:\docume~1\admini~1\locals~1\temp\nsc1.tmp

(b) Variant 2
Figure 6: Example of malware variants that generate the very same network traffic, but also
generate significantly different system events.

ware detection rate in all cases, as we discuss in Sec-
tion 6.2.

In order to analyze the quality of the final clusters gen-
erated by our system we make use of the cluster cohesion
and separation defined in Section 5. Figure 5 shows a
histogram of the cohesion index values (top graph) com-
puted for each of the clusters obtained from the Feb09
malware dataset, and the distribution of the separation
among clusters (bottom graph). Because of space limi-
tations we only discuss the cohesion and separation re-
sults from Feb09. The cohesion histogram only consid-
ers clusters that contain two or more malware samples
(clusters containing only one sample have cohesion equal
to 1 by definition). Ideally we would like the value of
cohesion for each cluster to be as close as possible to
1. Figure 5 confirms the effectiveness of our clustering
approach. The vast majority of the behavioral clusters
generated by our clustering system are very compact in
terms of AV label graphs. This shows a strong agree-
ment between our results and the malware family labels
assigned to the malware samples by the AV scanners.

Figure 5 also shows the distribution of the separation
between pairs of malware clusters. Ideally we would like
all the pairs of clusters to be perfectly separated (i.e.,
with a separation index equal to 1). We can see from
Figure 5 (bottom graph) that most pairs of clusters are
relatively well separated from each other. For example,
90% of all the cluster pairs from Feb09 have a separa-
tion index higher than 0.1. We would like to emphasize
that both cluster cohesion and separation provide a com-
parison with the AV labels, and that although our defi-
nition of cohesion and separation indexes attenuates the
effect of AV label inconsistency (see Section 5), the re-
sults ultimately depend on the quality of the AV labels

themselves. For example, we noticed that the majority
of pairs of clusters that have a low separation are due to
the fact that their malware samples are labeled by the AV
scanners as belonging to generic malware families, such
as “Generic”, “Downloader”, or “Agent”.

Overall, the distributions of the cohesion and separa-
tion indexes in Figure 5 show that most of the obtained
behavioral malware clusters are very compact and fairly
well separated, in terms of AV malware family labels. By
combining this automated analysis with the manual anal-
ysis of those cases in which the separation index seemed
to disagree with our clustering, we were able to confirm
that our network-level clustering approach was indeed
able to accurately cluster malware samples according to
their network behavior.

6.2 Network Signatures
In this section we discuss how our network-level be-

havioral malware clustering can aid the automatic gener-
ation of network signatures. The main idea is to period-
ically extract signatures from newly collected malware
samples, and to measure the effectiveness of such signa-
tures for detecting the malicious HTTP traffic generated
by current and future malware variants.

dataset clusters (n > 1) samples signatures pruned sig.
Feb09 235 3,494 544 446
Mar09 290 2,074 721 627
Apr09 178 1,285 378 326
May09 457 2,725 1,013 833
Jun09 492 2,438 974 915
Jul09 567 3,430 1,367 1,225

Table 2: Automatic signature generation and pruning results
(processing times for signature extraction are included in Table 1,
meta+sig column).
Table 2 summarizes the results of the automatic signa-

ture generation process. For each month worth of HTTP-
based malware, we considered only the malware clusters
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Feb09 Mar09 Apr09 May09 Jun09 Jul09
Sig Feb09 85.9% 50.4% 47.8% 27.0% 21.7% 23.8%
Sig Mar09 - 64.2% 38.1% 25.6% 23.3% 28.6%
Sig Apr09 - - 63.1% 26.4% 27.6% 21.6%
Sig May09 - - - 59.5% 46.7% 42.5%
Sig Jun09 - - - - 58.9% 38.5%
Sig Jul09 - - - - - 65.1%

Table 3: Signature detection rate on current and future malware
samples (1 month training)

containing at least 2 samples. We do not consider signa-
tures from singleton clusters because they are too specific
and not representative of a family of malware. We ex-
tracted a signature set from each of the considered clus-
ters as explained in Section 4. For example (Table 2, row
1), for the Feb09 malware dataset our clustering system
found 235 clusters that contained at least 2 malware sam-
ples. The cumulative number of distinct samples con-
tained in the 235 clusters was 3,494, from which the au-
tomatic signature generation process extracted a total of
544 signatures. After signature pruning (explained be-
low) the number of signatures was reduced to 446.

In order to perform signature pruning (see Section 4),
we proceeded as follows. We collected a dataset of
legitimate traffic by sniffing the HTTP requests cross-
ing the web-proxy of a large, well administered enter-
prise network with strict security policies for about 2
days, between November 25 and November 27, 2008.
The collected dataset of legitimate traffic contained over
25.3 ·106 HTTP requests from 2,010 clients to thousands
of different Web sites. We used existing automatic tech-
niques for detecting malicious HTTP traffic and man-
ual analysis to confirm that the collected HTTP traffic
was actually as clean as possible. We split this dataset
in two parts. We used the first day of traffic for signa-
ture pruning, and the second day to estimate the false
positive rate of our pruned signatures (we will discuss
our findings regarding false positives later in this sec-
tion). To prune the 544 signatures extracted from Feb09,
we translated the signatures in a format compatible with
Snort [6], and then we used Sort’s detection engine to
run our signatures over the first day of legitimate traffic.
We then pruned those signatures that generated any alert,
thus leaving us with 446 signatures. We repeated this
pruning process for all the signature sets we extracted
from the other malware datasets. In the following, we
will refer to the pruned set of signatures extracted from
Feb09 as Sig Feb09, and similarly for the other months
Sig Mar09, Sig Apr09, etc.

Detection Rate We measured the ability of our signa-
tures to detect current and future malware samples. We
measured the detection rate of our automatically gener-
ated signatures as follows. Given the signatures in the
set Sig Feb09, we matched them (using Snort) over the
HTTP traffic traces generated by malware samples in
Feb09, Mar09, Apr09, etc. We repeated the same process

by testing the signatures extracted from a given month on
the HTTP traffic generated by the malware collected in
that month and in future months. We consider a mal-
ware sample to be detected if its HTTP traffic causes
at least one alert to be raised. The detection results we
obtained are summarized in Table 3. Take as an exam-
ple the first row. The signature set Sig Feb09 “covers”
(i.e., is able to detect) 85.9% of the malware samples col-
lected in Feb09, 50.4% of the malware samples collected
in Mar09, 47.8% of the malware samples collected in
Apr09, and so on. Therefore, each of the signature sets
we generated is able to generalize to new, never-befor-
seen malware samples. This is due to the fact that our
network signatures aim to “summarize” the behavior of a
malware family, instead of individual malware samples.
As we discussed before, while malware variants from the
same family can be generated at a high pace (e.g., using
executable packing tools [16]), when executed they will
behave similarly, and therefore can be detected by our
behavioral network signatures. Naturally, as malware
behavior evolves, in time the detection rate of our net-
work signatures will decrease. Also, our approach is not
able to detect “unique” malware samples, which behave
differently from any of the malware groups our behav-
ioral clustering algorithm was able to identify. Nonethe-
less, it is evident from Table 3 that if we periodically
update our signatures with a signature set automatically
extracted from the most recent malware samples, we can
maintain a relatively high detection rate on current and
future malware samples.

False Positives In order to measure the false posi-
tives generated by our network signatures we proceeded
as follows. For each of the signature sets Sig Feb09,
Sig Mar09, etc., we used Snort to match them against
the second day of legitimate HTTP traffic collected as
described at the beginning of this Section. Table 4 sum-
marizes the results we obtained. The first row reports the
false positive rate, measured as the total number of alerts
generated by a given signature set divided by the number
of HTTP requests in the legitimate dataset. The num-
bers between parenthesis represent the absolute number
of alerts raised. On the other hand, the second row re-
ports the fraction of distinct source IP addresses that
were deemed to be compromised, due to the fact that
some of their HTTP traffic matched any of our signa-
tures. The numbers between parenthesis represent the
absolute number of the source IPs for which an alert was
raised. The results reported in Table 4 show that our sig-
natures generate a low false positive rate. Furthermore,
matching our signatures against one entire day of legit-
imate traffic (about 12M HTTP queries from 2,010 dis-
tinct source IPs) can be done in minutes. This means that
we would “keep up” with the traffic in real-time.
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Sig Feb09 Sig Mar09 Sig Apr09 Sig May09 Sig Jun09 Sig Jul09
FP rate 0% (0) 3 · 10−4% (38) 8 · 10−6% (1) 5 · 10−5% (6) 2 · 10−4% (26) 10−4% (18)
Distinct IPs 0% (0) 0.3% (6) 0.05% (1) 0.2% (4) 0.4% (9) 0.3% (7)
Processing Time 13 min 10 min 6 min 9 min 12 min 38 min

Table 4: False positives measured on one day of legitimate traffic (approximately 12M HTTP queries from 2,010 different source IPs).

Apr09 May09 Jun09 Jul09
Sig Feb09-Apr09 70.8% 35.6% 36.4% 35.1%
Sig Mar09-May09 - 61.6% 48.6% 44.7%
Sig Apr09-Jun09 - - 62.7% 48.6%
Sig May09-Jul09 - - - 68.6%

Table 5: Signature detection rate on current and future malware
samples (3 months training)

Other Detection Results Table 5 shows that if we
combine multiple signature sets, we can further increase
the detection rate on new malware samples. For ex-
ample, by combining the signatures extracted from the
months of Apr09, May09, and Jun09 (this signature set
is referred to as Sig Apr09-Jun09 in Table 5), we can
increase the “coverage” of the Jun09 malware set from
58.9% (reported in Table 3) to 62.7%. Also, by testing
the signature set Sig Apr09-Jun09 against the malware
traffic from Jul09 we obtained a detection rate of 48.6%,
which is significantly higher than the 38.5% detection
rate obtained using only the Sig Jun09 signature set (see
Table 3). In addition, matching our largest set of signa-
tures Sig May09-Jul09, consisting of 2,973 distinct Snort
rules, against one entire day of legitimate traffic (about
12 million HTTP queries) took less than one hour. This
shows that our behavioral clustering and subsequent sig-
nature generation approach, though not a silver bullet,
is a promising complement to other malware detection
techniques, such as AV scanners, and can play an impor-
tant role in a defense-in-depth strategy. This is also re-
flected in the results reported in Table 6, which represent
the detection rate of our network signatures with respect
to malware samples that were not detected by any of the
three AV scanners available to us. For example, using the
signature set Sig Feb09 , we are able to detect 54.8% of
the malware collected in Feb09 that were not detected by
the AV scanners, 52.8% of the undetected (by AVs) sam-
ples collected in Mar09, 29.4% of the undetected sam-
ples collected in Apr09, etc.

Feb09 Mar09 Apr09 May09 Jun09 Jul09
Sig Feb09 54.8% 52.8% 29.4% 6.1% 3.6% 4.0%
Sig Mar09 - 54.1% 20.6% 5.0% 3.1% 5.4%
Sig Apr09 - - 41.9% 5.8% 3.8% 5.2%
Sig May09 - - - 66.7% 38.8% 16.1%
Sig Jun09 - - - - 48.9% 21.8%
Sig Jul09 - - - - - 62.9%

Table 6: Detection rate on malware undetected by all AVs.

We can see from Table 6 that, apart from the signa-
tures Sig Apr09, all the other signature sets allow us to
detect between roughly 20% and 53% of future (i.e., col-
lected in the next month, compared to when the signa-
tures were generated) malware samples that AV scanners
were not able to detect. We believe the poor performance
of Sig Apr09 is due to the lower number of distinct mal-

ware samples that we were able to collect in Apr09. As
a consequence, in that month we did not have a large
enough number of training samples from which to learn
good signatures.

6.2.1 Real-World Deployment Experience
We had the opportunity to test our network signatures

in a large enterprise network consisting of several thou-
sands nodes, which run a commercial host-based AV sys-
tem. We monitored this enterprise’s network traffic for a
period of 4 days, from August 24 to August 28, 2009.
We deployed our Sig Jun09 and Sig Jul09 HTTP sig-
natures (using Snort) to monitor the traffic towards the
enterprise’s web-proxy. Overall, our signature set con-
sisted of 2,140 Snort rules. We used the first 2 days
of monitoring for signature-pruning purposes (see Sec-
tion 4), and the remaining 2 days to measure the num-
ber of false positives of the pruned signature set. Dur-
ing the pruning period, using a web interface to Snort’s
logs, it was fairly easy to verify that 32 of our rules
were actually causing false alerts. We then pruned (i.e.,
disabled) those rules and kept monitoring the logs for
the next 2 days. In this 2-days testing period, overall
the remaining signatures generated only 12 false alerts.
During our 4 days monitoring, we also found that 4
of our network signatures detected actual malware be-
havior generated from 46 machines. In particular, we
found that 25 machines were generating HTTP queries
that matched a signature we extracted from two variants
of TR/Dldr.Agent.boey [Avira]. By analyzing the
payload of the HTTP requests we actually found that
these infected machines seemed to be exfiltrating (POST-
ing) data to a notoriously spyware-related website. In
addition, we found 19 machines that appeared to be in-
fected by rogue AV software, one bot-infected machine
that contacted its HTTP-based C&C server, and one ma-
chine that downloaded what appeared to be an update of
PWS-Banker.gen.dh.dldr [McAfee].

6.2.2 Comparison with other approaches.
Table 7, third row, shows the next month detection

rate (NMDR) for signatures generated by applying fine-
grained clustering alone to each of our malware datasets.
For example, given the malware dataset Feb09, we di-
rectly applied fine-grained clustering to the related ma-
licious traffic traces, instead of applying our three-step
clustering process. Then, we extracted a set of signatures
from each fine-grained cluster, and we tested the ob-
tained signature set on the HTTP traces generated by exe-
cuting the malware samples from the Mar09 dataset. We
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repeated this process for all the other malware datasets
(notice that the NMDR for Jul09 is not defined in table
Table 7, since we did not collect malware from August
2009). By comparing the results in Table 7 with Table 3,
we can see that the signatures obtained by applying our
three-step clustering process always yield a higher detec-
tion rate, compared to signatures generated by applying
the fine-grained clustering algorithm alone.

Feb09 Mar09 Apr09 May09 Jun09 Jul09
Clusters 2,934 2,352 1,485 2,805 2,719 3,343
Time 4h4min 1h52min 1h1min 3h9min 3h18min 2h57min
NMDR 38.4% 25.7% 24.2% 46.2% 36.3% -

Table 7: Results obtained using only fine-grained clustering, in-
stead of the three-step clustering process (NMDR = next month
detection rate).

We also compared our approach to [10]. We ran-
domly selected around four thousand samples from the
Feb09 and May09 malware datasets. Precisely, we se-
lected 2,038 samples from Feb09 and 1,978 samples
from May09. We then shared these samples with the
authors of [10], who kindly agreed to provide the clus-
tering results produced by their system. The results they
were able to share with us were in the form of a sim-
ilarity matrix for each of the malware datasets we sent
them. We then applied single linkage hierarchical clus-
tering to each of these similarity matrices to obtain the
related dendrogram. In order to find where to cut the
obtained dendrogram, we used two different strategies.
First, we applied the DB index [17] to automatically find
the best dendrogram cut. However, the results we ob-
tained were not satisfactory in this case, because the clus-
ters were too “tight”. Only very few clusters contained
more than one sample, thus yielding very specific sig-
natures with a low detection rate. We then decided to
select the threshold manually using our domain knowl-
edge. This manual tuning process turned out to be very
time-consuming, and therefore we finally decided to sim-
ply use the similarity threshold value t = 0.7, which was
also used in [10]. A manual analysis confirmed that with
this threshold we obtained much better results, compared
to using the DB index.

We then extracted network signatures from the mal-
ware clusters obtained using both our three-step network-
level clustering system, our fine-grained clustering only,
and [10] (in all cases, we used the HTTP traffic traces
collected using our malware analysis system to extract
and test the network signatures). All clustering ap-
proaches were applied to the same reduced datasets de-
scribed earlier. The results of our experiments are re-
ported in Table 8. In the first row, “Sig Feb09 net-
clusters” indicates the dataset of signatures extracted
from the (reduced) Feb09 dataset using our three-step
network-level clustering. “Sig Feb09 net-fg-clusters”
represents the set of signatures extracted using our fine-
grained clustering only, while “Sig Feb09 sys-clusters”

indicates the signatures extracted from malware clus-
ters obtained using a system-level clustering approach
similar to [10]. We then tested the obtained signa-
ture sets on the traffic traces of the entire malware
datasets collected in Feb09 and Mar09. We repeated a
similar process to obtain and test the “Sig May09 net-
clusters”, “Sig May09 net-fg-clusters”, and “Sig May09
sys-clusters” using malware from the May09 dataset.
From Table 8 we can see that the signatures obtained us-
ing our three-step clustering process yield a higher detec-
tion rate in all cases, compared to using only fine-grained
clustering, and to signatures obtained using a clustering
approach similar to [10].

Feb09 Mar09 May09 Jun09
Sig Feb09 net-clusters 78.6% 48.9% - -
Sig Feb09 net-fg-clusters 60.1% 35.1% - -
Sig Feb09 sys-clusters 56.9% 33.9% - -
Sig May09 net-clusters - - 56.0% 44.3%
Sig May09 net-fg-clusters - - 50.8% 42.5%
Sig May09 sys-clusters - - 32.7% 32.0%

Table 8: Malware detection rate for network signatures gener-
ated using our three-step network-level clustering (net-clusters),
only fine-grained network-level clustering (net-fg-clusters), and
clusters generated using [10] (sys-clusters).

It is worth noting that while it may be possible to
tune the similarity threshold t to improve the system-
level clusters, our network-level system can automati-
cally find the optimum dendrogram cut and yield accu-
rate network-level malware signatures.

We also applied Polygraph [24] to a subset of (only)
49 malware samples from the Virut family. Polygraph
ran for more than 2 entire weeks without completing. It
is clear that Polygraph’s greedy clustering algorithm is
not suitable for the problem at hand, and that without the
preprocessing provided by our clustering system gener-
ating network signatures to detect malware-related out-
bound HTTP traffic would be much more expensive.

6.2.3 Qualitative Analysis
In this Section we analyze some of the reasons

why system-level clustering may perform worse than
network-level clustering, as shown in Table 8.

In some cases malware variants that generate the very
same malicious network traffic may generate signifi-
cantly different system-level events. Consider the ex-
ample in Figure 6, which reports information about the
system and network events generated by two malware
variants v1, and v2 (which are part of our Feb09 dataset).
v1 is labeled as Generic FakeAlert.h by McAfee
and as TR/Dropper.Gen by Avira (Trend did not de-
tect it), whereas v2 is labeled as DR/PCK.Tdss.A.21
by Avira (neither McAfee nor Trend detected this sam-
ple). When executed, the first sample runs in the back-
ground and does not display any message to the user.
On the other hand, the second sample is a Trojan that
presents the user with a window pretending to be the
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installation software for an application called Aquaplay.
However, regardless of whether the user chooses to com-
plete the installation or not, the malware starts running
and generating HTTP traffic. The set of operations each
variant performs on the system are significantly different
(because of space limitations Figure 6 only shows file
system events), and therefore these two samples would
tend to be separated by system-level behavioral cluster-
ing. However, the HTTP traffic they generate is exactly
the same. Both v1 and v2 send the same amount of data
to an IP address apparently located in Latvia, using the
same two POST requests. It is clear that these two mal-
ware samples are related to each other, and our network-
level clustering system correctly groups them together.
We speculate this is due to the fact that some malware
authors try to spread their malicious code by infecting
multiple different legitimate applications (e.g., different
games) with the same bot code, for example, and then
publishing the obtained trojans on the Internet (e.g., via
peer-to-peer networks). When executed, each trojan may
behave quite differently from a system point of view,
since the original legitimate portions of their code are
different. However, the malicious portions of their code
will contact the same C&C.

Another factor to take into account is that malware
developers often reuse code written by others and cus-
tomize it to fit their needs. For example, they may reuse
the malicious code used to compromise a system (e.g.,
the rootkit installation code) and replace some of the
malicious code modules that provide network connec-
tivity to a C&C server (e.g., to replace an IRC-based
C&C communication with code that allows the malware
to contact the C&C using the HTTP protocol). In this
case, while the system-level activities of different mal-
ware may be very similar (because of a common sys-
tem infection code base), their network traffic may look
very different. In this case, grouping these malware in
the same cluster may yield overly generic network signa-
tures, which are prone to false positives and will likely be
filtered out by the signature pruning process. Although it
is hard to measure how widespread such malware propa-
gation strategies are, it is evident that system-level clus-
tering may not always yield the desired results when the
final objective is to extract network signatures.

7 Limitations and Future Work
Similarly to previous works that rely on executing

malware samples to perform behavioral analysis [9, 10,
20], our analysis is limited to malware samples that per-
form some “interesting actions” (i.e., malicious activi-
ties) during the execution time T . Unfortunately, these
interesting actions (both at the system and network level)
may be triggered by events [11] such as a particular date,
the way the user interacts with the infected machine, etc.

In such cases, techniques similar to the ones proposed
in [11] may be used to identify and activate such triggers.
Trigger-based malware analysis is outside the scope of
this paper, and is therefore left to future work.

Since we perform an analysis of the content of HTTP
requests and responses, encryption represents our main
limitation. Some malware writers may decide to use the
HTTPS protocol, instead of HTTP. However, it is worth
noting that using HTTPS may play against the malware
itself, since many networks (in particular enterprise net-
works) may decide to allow only HTTPS traffic to/from
certified servers. While some legitimate websites oper-
ate using self-signed public keys (e.g., to avoid CA sign-
ing costs), these cases can be handled by progressively
building a whitelist of authorized self-signed public keys.
However, we acknowledge this approach may be hard to
implement in networks (e.g., ISP networks) where strict
security policies may not be enforced.

Our signature pruning process (see Section 4) relies on
testing malware signatures against a large dataset of le-
gitimate traffic. However, collecting a completely clean
traffic dataset may be very hard in practice. In turn,
performing signature pruning using a non-clean traffic
dataset may cause some malware signatures to be erro-
neously filtered out, thus decreasing our detection rate.
There are a number of practical steps we can follow to
mitigate this problem. First, since we are mostly inter-
ested in detecting new malware behavior, we can apply
our signature pruning process over a dataset of traffic col-
lected a few months before. The assumption is that this
“old” traffic will not contain traces of future malware be-
havior, and therefore the related malware signatures ex-
tracted by our system will not be filtered out. On the
other hand, we expect the majority of legitimate HTTP
traffic to be fairly “stable”, since the most popular Web
sites and applications do not change very rapidly. An-
other approach we can use is to collect traffic from many
different networks, and only filter out those signatures
that generate false positives in the majority of these net-
works. The assumption here is that the same new mal-
ware behavior may not be present in the majority of the
selected networks at the same time.

Evasion attacks, such as noise injection attacks [28]
and other similar attacks [25], may affect the results of
our clustering system and network signatures. Since we
run the malware in a protected environment, it may be
possible to identify what HTTP requests are actually per-
formed to send or receive information critical for the
correct functioning of the malware using dynamic taint
analysis [13]. This may allow us to correlate network
traffic with system activities performed by the malware,
and to identify whether the malware is injecting ran-
domly generated/selected elements into the network traf-
fic. However, taint analysis may be evaded [12] and mis-
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led using sophisticated noise injection attacks. System-
level malware clustering (such as [9, 10]) and signature
generation algorithms may also be affected by such at-
tacks, e.g., by creating “noisy” system events that do not
serve real malicious purposes, but simply try to mislead
the clustering process and the generation of a good de-
tection model. Noise injection attacks are a challenging
research problem to be addressed in future work.

8 Conclusion
In this paper, we presented a novel, network-level

behavioral malware clustering system, which focuses
on HTTP-based malware and clusters malware samples
based on a notion of structural similarity between the ma-
licious HTTP traffic they generate. Through network-
level analysis, our behavioral clustering system is able
to unveil similarities among malware samples that may
not be captured by current system-level behavioral clus-
tering systems. Also, we proposed a new method for
the analysis of malware clustering results. The output of
our clustering system can be readily used as input for al-
gorithms that automatically generate network signatures.
Our experimental results on over 25,000 malware sam-
ples confirm the effectiveness of the proposed clustering
system, and show that it can aid the process of automat-
ically extracting network signatures for detecting HTTP
traffic generated by malware-compromised machines.
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