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Abstract

Today there exist three environments in which to perform
experimental network and distributed systems research:
network emulators, simulators, and live networks. The
continued use of multiple approaches highlights both the
importance and inadequacies of each. Emulab is an ex-
perimentation facility that seamlessly integrates these ap-
proaches. Emulab’s primary goals areease of use, control,
andrealism. Unlike the constituent experimental platforms
it leverages, Emulab achieves these goals simultaneously.

1 Introduction

The diverse requirements of network and distributed sys-
tems research are not well met by any single experimental
environment. Competing approaches remain popular be-
cause each covers a different point in a space defined by
levels ofease of use, control, andrealism. Discrete-event
simulation, as exemplified byns [42], and live network ex-
perimentation represent two extreme techniques. Emula-
tion [3, 40, 33, 34] is a hybrid approach that subjects real
hardware, protocols, and workloads to a synthetic network
environment.

Emulab offers a complementary alternative to existing
experimental environments. It is a large software system
and set of tools, that when deployed on an appropriate clus-
ter of machines, provides a time- and space-shared platform
for research, education, or development in distributed sys-
tems and networks. Emulab’s primary contribution is the
seamlessintegrationof the above seemingly disparate tech-
niques in a manner that preserves thecontrolandease of use
of simulation, without sacrificing therealismof emulation
and live network experimentation.

Figure 1 enumerates characteristics of traditional ap-
proaches. Each offers unique benefits, thus guarantee-
ing their continued importance. For example, simulation
presents a controlled, repeatable environment. However, its
high level of abstraction may be inappropriate, for exam-
ple, when studying the effects of interrupt-induced receiver

Metric Simul. Emul. Live Net Emulab
Ease of Use X ModelNet? X

Performance X X X

Repeatability X X X

Packet-Level Control X X

Coarse-Grain Control X X X

Scalability varies w/ModelNet varies X

Param. Space Explor. X ModelNet? X

Reuse of Models X ModelNet? X

Real Links X X

Real Routers X X

Real Hosts X X X

Real Applications X X X

Real Users X

Table 1: Characteristics of Experimental Platforms

livelock on a heavily-loaded system. Live networks achieve
realism, but surrender repeatability and the ability to mod-
ify or even monitor internal router behavior. Single-node
WAN emulators such as Dummynet [40] introduce artifi-
cial delays, losses, and bandwidth constraints to real appli-
cations in a controlled manner, but require tedious manual
configuration.

Emulab spans simulation, emulation, and live network
experimentation by integrating them into a common frame-
work. This framework provides integrated abstractions, ser-
vices, and namespaces common to all three environments,
such as node and link allocation and naming, mapping
them into domain-specific mechanisms and internal names.
In this way Emulab masks much of the heterogeneity of
the various approaches. Emulab subsumes the above tech-
niques by automatically allocating simulated, emulated, or
actual wide-area network links, thus obviating manual con-
figuration. While Emulab provides most of the benefits
of each individual technique, it is much more than a sim-
ple sum of services. Emulab’s integration means that tools
such as topology and traffic generators that were originally
targeted for only one domain are often useable across all
three. Furthermore, a particular experiment is not confined
to a single experimental technique; it may include simu-
lated, emulated, and wide-area resources.

Versions of this rapidly evolving system have been de-
ployed at the University of Utah since April 2000, to pro-
vide a shared, Internet-accessible, research and education



facility open to the community. Emulab’s success has
prompted other institutions to adopt it to build similar fa-
cilities, and federation is planned.

1.1 Design Principles
Emulab achieves integration through four primary design
principles:

Transparency: An Emulab experiment can consist of
simulated, emulated, and wide-area links and nodes. These
realizations are essentially transparent to the user, since
links and nodes share a common namespace and are con-
sistently specified innssyntax.

Virtualization: Emulab virtualizes IP addresses, hosts,
and links. This level of indirection allows for control and
configuration of these resources, as well as their efficient
time-sharing. It also affords greater scalability by allowing
the seamless multiplexing of virtual devices.

Automation: Experiment creation involves a large num-
ber of steps including, for example, configuration of net-
work interfaces, routing tables, and switches, reloading disk
images, exporting file trees, and configuring traffic genera-
tors. Emulab removes the tedium of manual configuration
through automation. An integrated event system and the
Turing-complete language, Tcl, that underlies thens inter-
face, help provide arbitrary programmatic control.

Efficiency: Emulab was designed to make efficient use
of physical resources and to enhance experimenter produc-
tivity. It manages the shared use of physical resources to
provide their greatest possible utilization, while ensuring
inter-experiment isolation. Emulab performs experiment
creation, swapping, and termination in a few minutes, en-
abling an interactive style of use.

2 Resources
As its name suggests, Emulab was originally conceived as
an emulation platform. The flexibility of its design has
helped it to grow from an emulated “Internet in a room”
to a “slice of the Internet.” It now supports a diverse set
of physical node and link types. Nodes and links are vir-
tualized in the sense that they may be allocated and con-
trolled largely independently of their physical realization.
Virtual nodes may be instantiated from a large set of local
nodes, from a smaller set of distributed nodes, or withinns
simulation. Distributed nodes are currently provided by the
RON [6] testbed. Virtual links may map directly to local-
area or wide-area links or may be emulated by Dummynet.

2.1 Virtual Nodes

Local Nodes: The Utah Emulab currently contains 168
PCs that can function as edge nodes, traffic generators, or
routers. Each machine has five 100Mb Ethernet interfaces:
one is on a dedicated control and data acquisition network,
and the others are for arbitrary use by experiments. At each

PC node, local memory and disk provide ample room for
local computation and logging of monitoring data.

Distributed Nodes: By subsuming the RON testbed,
Emulab now has 16 nodes at remote sites, including nodes
connected via Internet2, DSL, and cable modems. Though
their shared usage model and administrative policies limit
Emulab’s control over them, they support many of the key
features of local nodes. For example, Emulab sets up ac-
counts, provides convenient access via distribution of ssh
keys, and automates traffic generation.

Simulated Nodes: Network simulation [11] has been
widely used to rapidly design, evaluate, and validate
new protocols as well as study existing protocol behav-
ior. Though simulation often abstracts a good deal of de-
tail [24, 19], it can provide scalability beyond the limits of
physical resources. Virtual simulated nodes can be multi-
plexed on one physical node. Emulab integrates simulation
throughns’s emulation facility,nse[17]. This allows sim-
ulated nodes, links, and traffic to be subjected to live appli-
cation traffic.

2.2 Virtual Network Links

Local-Area Links: Emulab can easily exploit the large
number of local nodes and wealth of available bandwidth
to realize a switched LAN topology. Rapid and automated
configuration of operating systems makes Emulab an attrac-
tive platform for kernel development and research within
local-area networks.

All local nodes are connected using high-end switches,
that function as a “programmable patch panel.” To al-
low arbitrary topologies within Emulab and provide secu-
rity to Emulab users, we employ Virtual LANs (VLANs).
VLANs are a switch technology that restricts traffic gen-
erated within a VLAN to other machines in that VLAN.
This technology can be used to define subnets within an
experiment as well as to protect users from others’ stray
traffic. Separate switches are used for the control and ex-
perimental networks to provide isolation of control traffic
from experiment-generated traffic.

Emulated Links: Emulab uses Dummynet [40] to em-
ulate wide-area links within a local-area environment. A
Dummynet node lies between two physical nodes and en-
forces queue and bandwidth limitations, introducing delays
and packet loss. Dummynet nodes act as Ethernet bridges,
so they are transparent to experimental traffic.

Wide-Area Links: If experimenters specify no par-
ticular links to wide-area nodes, they obtain the fully-
interconnected “natural” Internet. However, if they specify
such links, we set up IP tunnels so that distributed nodes
can use “private” IP addresses, maintaining our principle
of virtualization. In conjunction with our automated rout-
ing setup, an overlay network is automatically created to
the experimenter’s specifications. These tunnels also allow
transparent communication between wide-area nodes and
experimental interfaces on our local testbed nodes, so that
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Figure 1: Emulab Architecture

networks can easily be constructed that contain both “live”
Internet links and emulated Emulab links. This ensures that
distributed nodes may be seamlessly treated as local nodes
with respect to traffic generation, routes, and IP addresses.

Simulated Links: Emulab’s deployment ofns makes
a vast wealth of simulation infrastructure accessible to an
emulated or distributed experiment. Emulab can leverage
ns’ rich and diverse protocol suite, varied statistical mod-
els, or support for wireless devices. Through its integra-
tion with Emulab,nsecan be used to simulate a large-scale
network within an emulation. For example, the NSWEB
model [44] is considered to be a very accurate web work-
load model based on SURGE [9] that can be used to gener-
ate large number of web traffic flows. The close interaction
between simulation and live protocols presents an opportu-
nity to validatens’ abstractions.

2.3 Planned Extensions:
Though these physical realizations have proven successful,
virtualization ensures Emulab is not bound to them. Plans
are underway to incorporate additional resource types.
We are constructing a WAN emulator based on the Intel
IXP1200 network processor [28] that can more scalably im-
plement congestion, route flapping, route asymmetry, router
queuing delays, and packet dropping policies. Secondly, we
plan to incorporate the powerful ModelNet [43] network
emulation platform, which should offer greater scalability
for wide-area flows. Such integration offers ModelNet’s
benefits, automatically controlled and configured through
Emulab’s existing interfaces.

3 Experiment Life Cycle
An experiment is Emulab’s central operational entity. It
represents a network configuration, including switch VLAN
mappings and path characteristics; node state, including
operating system images; and database entries, including
event traces and traffic generators to be instantiated on
nodes. The intended duration of an experiment ranges from
a few minutes to many days. Emulab places a premium on
efficient experiment creation and termination so that these

latencies are not a barrier to interactive experimentation.
When interaction is not required, Emulab can fully auto-
mate the process by scheduling and executing batch exper-
iments in the background as resources permit.

As we proceed, we develop an analogy between an ex-
periment and a Unix process. This metaphor illustrates the
life cycle of an experiment and Emulab’s role in automat-
ing and controlling the procedure. Emulab compiles anns
specification to synthesize a hardware realization of the vir-
tual topology. The specification is first parsed into an inter-
mediate representation that is stored in a database and later
allocated and “loaded” onto hardware. During experiment
execution, Emulab provides interfaces and tools for experi-
ment control and interaction. Finally, Emulab may preempt
and “swap out” an experiment.

3.1 Accessing Emulab
Emulab employs a small set of administrative nodes to pro-
vide a secure interface, as depicted in Figure 1.master-
host is a secure server for many of our critical systems, in-
cluding the web server, database, and switch management.

To minimize administrative overhead, Emulab employs
a hierarchical structure for authorization. To begin a new
project, a “leader,” e.g., a faculty member or senior stu-
dent, submits information through a straightforward web
interface. Once the project has been approved by Emulab
staff, authority and accountability is delegated to the project
leader.

The web interface provides a universally-accessible por-
tal to Emulab. Needing only a standard web browser, an ex-
perimenter may create or terminate an experiment, view the
corresponding virtual topology, or configure various node
properties. The simplicity of this interface ensures that nei-
ther manual configuration nor bureaucratic delays are a bar-
rier to experimentation.

Having created an experiment, experimenters may log di-
rectly into their allocated nodes or may log in touser-
shost , which serves as a centralized point of control. This
node is currently alsofileserver , which exports home
and project directories across an experiment and stores op-
erating system images.

3.2 Specification
Just as program text is the concrete specification of a run-
time process, annsscript written in Tcl configures an Emu-
lab experiment. This choice facilitates validation and com-
parison sincens-specified topologies and traffic genera-
tion can be seamlessly reproduced in an emulated or wide-
area environment. For the large community of researchers
well-versed inns, it provides a graceful transition from
simulation and an opportunity to leverage existing scripts.
Since Tcl is a general-purpose programming language, a re-
searcher is empowered with looping constructs, condition-
als, and arbitrary functions to drive experiment configura-
tion and execution.
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set ns [new Simulator] ;# Create the simulator
source tb_compat.tcl ;# Add Emulab commands
$ns rtproto Static ;# Automatic routing

set source [$ns node] ;# define new nodes
set router [$ns node]
set dest [$ns node]

# Connect source to router and router to dest
$ns duplex-link $source $router 10Mb 0ms RED
$ns duplex-link $router $dest 1.5Mb 20ms DropTail

tb-set-node-os $source FBSD45-STD ;# Set OS
tb-set-hardware $dest pcinet ;# Request wide-area node

$ns run ;# "run" on Emulab

Figure 2: A linear topology with routing and a wide-area node

Emulated nodes and links enjoy full implementation
transparency. By default,ns syntax used to specify nodes
and links is interpreted by a parser that configures inter-
posed Dummynet nodes to effect a virtual topology. To in-
stead incorporate distributed nodes, an experimenter need
only specify a corresponding node type, as shown in Fig-
ure 2. A simulated topology can be embedded within a
physical topology by wrapping standardns syntax in a
make-simulated block.

Emulab’s automation extends beyond virtual topology
configuration to encompass dynamic aspects of an experi-
ment, including traffic generation. Cross traffic is important
for studying the behavior of protocols in the face of conges-
tion. Any constant bit rate (CBR) traffic flow identified via
standardnssyntax automatically instantiates traffic sources
and sinks using the TG Tool Set [31]. Simulated FTP and
Telnet flows are rendered usingns’ emulation facility,nse.
This mechanism injects traffic generated by models, such
as the tcplib telnet distribution, into a live network.

Program objects allow arbitrary applications to be at-
tached to annsnode. A program object may be started and
stopped at any point during an experimental run. Though
outside standardnssyntax, this mechanism greatly simpli-
fies remote execution.

Experimenters unfamiliar withns syntax may create
topologies graphically via the “NetBuild” Java GUI. This,
in turn, automatically generates annsconfiguration file. Al-
ternatively, a standard topology generator such as GT-ITM
or BRITE may be used to generate annsscript that is sub-
sequently passed to Emulab. This highlights one of the pri-
mary benefits of integration: application of tools intended
for one experimental domain, in this case simulation, to an-
other. Experiment creation is the only step requiring exper-
imenter intervention; all subsequent phases are handled by
Emulab.

3.3 Parsing
To realize an experimental configuration, Emulab uses a
compiler that acceptsns as a source language. Portability
goals motivate the componentizing of a traditional compiler
into front and back ends. While a traditional compiler only
targets one architecture within a given run, Emulab must

target multiple, heterogeneous physical resources simulta-
neously. For example, a single experiment may incorporate
simulated, emulated, and wide-area links.

Front-end compilation is performed by a Tcl/ns parser.
The parser recognizes the subset ofns relevant to topology
and traffic generation. Written in Tcl, it operates by over-
riding and interposing on standardnsprocedures. Emulab
executes the script in the context of these new definitions.
As such, the script enjoys the full complement of Tcl’s fea-
tures and syntax. Unrecognizednscommands are ignored,
while ns syntax configuring links and traffic sources and
sinks triggers the overloaded procedures.

An Emulab-specific library defines procedures for con-
trolling aspects outside ofns’ domain, including configur-
ing a node’s operating system and specifying its hardware
type. These procedures are not required, since Emulab sup-
plies default values in their absence. A stub library defines
null procedures so that the same script may be executed
both on Emulab and withinns.

Both overloaded and Emulab-specific procedures popu-
late the database. This relational database stores informa-
tion about hardware, users, and experiments. The database,
in part functioning like a compiler’s intermediate represen-
tation (IR), presents a consistent abstraction of heteroge-
neous resources to higher layers of Emulab and to exper-
imenters. For example, the front-end database representa-
tion of distributed and emulated nodes differ only in a type
tag. The database provides a single name space for all ex-
perimental entities. Thus, in most cases, experimenters can
interact with them using the same commands, tools, and
naming conventions regardless of their implementation. As
an example, nodes of any type may host traffic generators,
despite the fact that the traffic may flow over links simulated
by ns, emulated by Dummynet, or provided by a distributed
testbed.

3.4 Global Resource Allocation
The global resource allocation phase is responsible for
binding abstractions created during previous stages to phys-
ical entities. It corresponds to the resource allocation per-
formed during back-end compilation and the name binding
done during linking.

A simulated annealing algorithm,assign , maps a tar-
get configuration onto physical resources. The algorithm
queries the database to obtain the intermediate representa-
tion of the target configuration as well as the set of available
nodes, switches, and links. On the current hardware base
assign finishes in less than 15 seconds. If the (random-
ized) algorithm fails to find a solution on the first run, it is
repeated a number of times. If still unsuccessful, the fail-
ure is reported to the user, any residual experimental state
is reaped.

Based on the output ofassign , Emulab reserves nodes
and links and updates the database with the resource map-
pings, user-specified node names, delay, bandwidth, and
loss parameters, and operating system image. To exploit
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parallelism, Emulab employs optimistic concurrency mea-
sures. Therefore, reservations may fail due to conflicts
caused by race conditions. If a reservation fails,assign
is again invoked and the process is repeated until reaching
successful allocation or a threshold number of failures.

To ensure consistent naming across instantiations of an
ns configuration, Emulab virtualizes IP address and host
names. This level of indirection is necessary since a con-
figuration is unlikely to be mapped to the same physical
resources upon re-creation. While experimenters are free to
manually assign IP addresses, this task is most often left to
Emulab. Despite using a randomized algorithm to assign
actual physical nodes and links, Emulab deterministically
names nodes and links across experiment creations.

3.5 Local Self-Configuration
Emulab must configure resources after their assignment
to physical hardware. This is driven by the nodes them-
selves, but entirely controlled by state stored centrally in the
database. We have found that managingnode stateis one of
the most crucial aspects in meeting our goals. For robust-
ness and security reasons we keep the nodes free of persis-
tent configuration state. At boot time they are in their only
fully-known state, and at that time configure themselves out
of the database.

Emulab ensures that a clean disk image is installed on
every node before experiment swapin or creation; this pre-
sented a significant performance challenge. The conflicting
policy and performance requirements of disk loading are
described later, in section 4.2.

In parallel, cooperative nodes are issued a Unixreboot
command viassh ; any nodes that fail to reboot in a timely
manner are power cycled. The PCs’ BIOS are configured
to have their network cards use Intel’s PXE [39] bootstrap
protocol. Each node’s PXE ROM contactsmasterhost ,
loading a first level kernel as directed by the database. This
first level kernel might be the fast disk image loader out-
lined above, a memory based operating system, or typi-
cally, a larger second level bootstrap program. This second
level loader again contacts the database to determine the
next step, either booting from an on-disk partition or down-
loading an OSKit [21] kernel. This multiphase approach
permits flexible configuration and customization of the OS
that runs on each node in an experiment. The system then
waits for the nodes to come back up. If a node does not
come alive in a timely manner it is assigned to the system
pseudo-experiment “down” for later manual examination.

The default installations of FreeBSD and Linux have
slightly modified initialization sequences that invoke a node
configuration script, called the Testbed Master Control
Client, TMCC. By communicating with a daemon that
fronts the database, it obtains the information required to
configure interfaces, host names, Dummynet delays, users,
groups, RPM packages, and startup scripts to be run. It
NFS-mounts the specified project’s tree and users’ home
directories fromfileserver .

Through theTMC daemon, a primitive node synchroniza-
tion mechanism is available to user scripts. Each node has
an associated “ready” flag in the database. Nodes can de-
clare themselves ready and retrieve the count of ready nodes
and the total number of nodes in their experiment.

3.6 Experiment Control
Traditional operating systems offer simple job control over
local processes, including an ability to start, stop, and re-
sume execution. Distributed operating systems and batch
queue systems extend this mechanism to apply across a net-
work. To provide complete accessibility to remote experi-
menters and zero penalty for remote use, Emulab is faced
with a similar challenge. Like these systems, and like sim-
ulators, Emulab must control distributed processes such as
traffic generators running throughout an experiment. To this
end, Emulab employs a distributed event system. Unlike the
above systems, Emulab must expose hardware resources to
remote users. Through virtualization, Emulab provides dis-
tributed access to local resources, such as serial lines, and
extends control mechanisms to links.

If virtualization imposed a common, high-level inter-
face to physical resources, Emulab would limit an experi-
menter’s power and expressiveness over these entities. Em-
ulab provides abstractions via tools andns’ high-level syn-
tax. However, experiments are not restricted to such in-
terfaces. Such unchecked power allows an experimenter
to unwittingly corrupt their assigned resources. Emulab’s
ability to restore an experiment’s state from the database
and reload disk images from a repository protect the exper-
imenter from accidents.

Emulab currently supports an event system that allows
users and programs to remotely control activity on the
nodes of a testbed. Our control infrastructure uses events
for activities such as executing programs or scripts, notify-
ing device drivers of changes to characteristics of the sim-
ulated network, and tracking important system events (e.g.,
node or link failures).

One aspect of control that we have found to be highly
valued by experimenters is “root” access, or superuser priv-
ileges. While this does increase the need for high security to
protect experimenters from each other and protect the world
from their experiments we have found root access to be crit-
ical. Emulab is one of the only facilities where researchers
can reasonably obtain root access on remote nodes.

Every node in Emulab is connected to a control net-
work, separate and isolated from the network that is used
for experimental traffic. This provides three important
virtues: more reliable control, cleaner experimental data,
and greater security.

All nodes are connected to serial lines for console inter-
action and power controllers so that they can be rebooted
by experimenters, even if they crash or get “wedged.” Un-
less their program needs to use a display or mouse, Emulab
does not penalize remote experimenters—with only minor
exceptions, remote users have as much control over nodes
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as they would with local machines, and in many ways, they
have more, since our tools provide easy access to these fa-
cilities. For example, console lines are virtualized so that an
experimenter need not be logged into the host where the se-
rial line is attached; all consoles are securely available from
any Unix machine.

3.7 Preemption
Traditional operating systems preempt and schedule pro-
cesses for better system throughput and CPU utilization.
Because Emulab is a shared facility, efficient utilization is
also a priority. Therefore, it supports the ability to “swap
out” and later re-instantiate an experiment. The time scales
of scheduling quanta and process context switch times en-
sure that Unix preemption can generally occur without up-
setting interactive use. Preemption in Emulab is compli-
cated since the larger time scales inherent in experiment
setup and teardown can not occur without noticeable disrup-
tion to experiments and results. This additional constraint
means that Emulab does not enjoy a Unix scheduler’s free-
dom to arbitrarily preempt processes. Instead, we have de-
signed a facility to detect idle periods before swapping out
an experiment.

Emulab nodes are often under-utilized despite being as-
signed to experiments. Although commonly due to negli-
gence, users are reluctant to relinquish nodes assigned to an
idle experiment. Determining idleness in Emulab is diffi-
cult; the indicators used in standard clusters are not sen-
sitive enough, since an active experiment may be doing
nothing sending a single network probe every 5 minutes.
Indicators we monitor include activity in the experimental
network, use of pseudo-terminal devices (indicating inter-
action with the node), and CPU load averages. Our idle
detection system gathers data on these three aspects of ac-
tivity. Eventually we will use this system to drive automatic
swapout of idle experiments.

During “swap out”, Emulab stores the virtual topology,
host names, and general setup of an experiment in the
database. “Swap in” reconstitutes this state on physical re-
sources after invokingassign . Since nodes currently re-
tain neither their disk nor their memory state, an NFS file
system is used for persistence.

4 Issues
Here we explore a number of issues which were particularly
important in achieving Emulab’s goals.

4.1 Mapping of Virtual to Physical Resources
4.1.1 Mapping Local Resources
In a testbed of appreciable size and finite inter-node band-
width (i.e., a practical and economical one), we must assign
the user’s virtual nodes and links to their physical counter-
parts. That is, Emulab ensures the physical hardware will
support the emulated traffic flows without introducing any
bottlenecks, with their attendant experimental artifacts. As
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Figure 3: A trivial six-node partitioning problem

a trivial example, consider the physical network on the left
in Figure 3. If we wish to emulate the virtual topology
shown to its right, then we must pick a physical realization
which groups A, B, and C together on one switch, and D, E,
and F on the other switch; any other configuration will at-
tempt to send excess bandwidth across the inter-switch link.

We call determining the relationship between these two
networks thetestbed mapping problem. This problem is
trivial in the six-node example, but in the general case, it is
NP-hard (by reduction to the multiway separator problem,
or the minimum-degree graph partitioning problem [22]).

To maximize the utility of the testbed, we should create
an assignment in interactive time; in the same way that re-
searchers use thenssimulator, interactive use of the testbed
creates a qualitative difference in the user’s experience, not
just a quantitative one. Interactive use encourages “what if”
experiments and rapid adaptation to results, rather than the
slow tedium of a batch-processed system.

Our testbed mapper, calledassign , searches for an op-
timal assignment of virtual nodes to physical nodes. It at-
tempts to minimize the bandwidth used between switches,
and to minimize the total number of switches affected by
one user’s virtual network, so as to retain the largest pos-
sible degree of usability for other concurrent users of the
testbed. Specifyingfeaturesallows users to obtain partic-
ular processor types, link types, or nodes last used by the
same project. We examine the performance ofassign in
Section 5.2.

4.1.2 Mapping Wide-Area Resources
The designer of an experimental topology which includes
distributed nodes may assign specific desired bandwidth
and latency characteristics between these nodes. When this
experiment gets mapped to physical resources, the experi-
menter expects that the resulting physical topology will re-
semble the one requested as closely as possible. However,
unlike the highly configurable connections inside Emulab,
connections between distributed nodes traverse the Internet
through uncontrolled links. Fortunately, on the Internet,n

physical nodes (ideally) offern � (n � 1) links between
them—each one with its own, probably unique, characteris-
tics. Because of this, an ideal mapping of experiment nodes
onto physical nodes can be reasonably close to experiment
specifications.

However, finding this ideal mapping is a far from simple
task. For non-trivial experiments, an exhaustive search is
out of the question. To provide a best-effort solution in a
short amount of time, we implemented a genetic algorithm.

6



Solutions deemed “fit” for purposes of the genetic algo-
rithm had a low (sum of roots) latency error, a low (sum of
logs of ratios) bandwidth error, and avoided the assignment
of multiple experiment nodes onto the same physical node.
The experimenter may decide to base the mapping on long-
term observed physical characteristics of the network, or on
recently gathered statistics that better reflect the sometimes
dynamic nature of the Internet. The algorithm completes its
task of mapping experiments to our current distributed node
set in a few seconds at most. Performance of this system is
discussed in further detail in Section 5.2.

4.2 Disk Reloading
An important feature of testbed control is the ability to
reload disks automatically. Disk reloading is the most re-
liable and efficient way to install a new OS image.

Policy: In the policy for disk reloading we see a tension
between the latency of typical experiment creation, over-
all Emulab throughput, Emulab system complexity, node
robustness, and experiments’ security. Our policies have
evolved over time, driven by our tools, pressure on re-
sources, and experience.

To ensure a consistent, safe, and secure OS installation,
each node in a new experiment requires that a clean disk
image be loaded, sometime after the previous experiment
terminated. However, disk reloading remains one of the
most time-consuming aspects of experiment creation and
swapin, although over time we have reduced it to less than
100 seconds. Currently, Emulab’s policy is that upon ex-
periment termination, each node’s disk is reloaded with the
default image containing both FreeBSD and Linux. This
works well since most users request one of these OS’s, and
if there are sufficient free nodes, the disks are reloaded in
the background, ready to go for the next swapin.

A troubling effect occurs, however, in the common case
of a single experimenter creating and tearing down very
similar experiments, in quick succession; this frequently
also happens with the batch queue. The nodes are not avail-
able for the few (typically wasted) minutes while reloading,
which is exactly when the user requests a similar number
of nodes for their next experiment. In the past, to avoid
this anomaly we delayed reloading for 100 seconds, real-
locating the unreloaded node only to an experiment in the
same project as the previous experiment. However, that has
robustness vulnerabilities.

Users can specify an alternative disk image or partition,
including a user-provided image, holding an arbitrary OS.
In that case, the background disk reloading was entirely
wasted. Automated analysis of historical and ongoing ex-
periment creation and swap patterns would be one way to
attack this challenge.

Process: The procedure for disk reloading follows the
initial steps described in Section 3.5: the PXE BIOS loads
the initial bootstrap which in turn loads a small, memory-
based FreeBSD system used to run the disk loader client.
This client contacts an instance of the disk loader server,

downloading, uncompressing and writing out the disk im-
age. After completion, the node reboots from the newly
installed image.

We currently provide a small set of images containing
various versions of Linux and FreeBSD, but in the future
will likely provide others, including Windows 2000. Cus-
tom disk images can be used to boot an unsupported OS, to
load a newer (or older) version of a supported OS, or to in-
stall a specialized version of an existing image on multiple
nodes.

Disk reloads occur on each experiment creation or
swapin, so performance is a major concern. Although im-
age creation is much less frequent than image loading, its
performance is reasonably important. Once Emulab made
it quick and easy for users to save the entire state of their
disks in a few minutes with a few mouse clicks, they be-
came much more willing to swap out their experiments.
However, since disk loading is far more frequent and is in
the critical path of experiment creation and swapin, we have
focused on that.

The Emulab disk loader, termed “Frisbee” (the flying
disk) uses three main techniques to improve performance
from Emulab’s initial 29 minutes per image. First, it care-
fully overlaps block decompression and device I/O. Second,
it uses a domain-specific compression algorithm that can
identify and skip “empty” areas of a disk such as filesys-
tem free blocks and swap partitions, while using standard
zlib -based compression for the remainder. This algorithm
exploits the fact that many disks contain large swap parti-
tions and mostly-empty filesystems. For example, one of
our standard FreeBSD images for a 3GB partition is over
80% unused, and reduces to 156MB using Frisbee image
compression, versus 473MB using naivezlib compres-
sion. In addition to saving network bandwidth when trans-
ferring the file, the filesystem-specific compression enables
the Frisbee decompression program to skip, rather than ze-
roing, the unused blocks when writing out the disk im-
age. This turned out to be very important: once we had
done standard compression and implemented a multicast
mechanism, DMA to the disk became the bottleneck. For
the aforementioned disk image, Frisbee would write out
550MB of actual decompressed data rather than the full
3GB. The third optimization technique used by Frisbee is
to multicast the compressed images to clients, dramatically
reducing the required server bandwidth and improving scal-
ability. The result is that a standard FreeBSD image that
requires 88 seconds to load onto a single node, requires an
average of only 97 seconds per node to load on 80 nodes.

4.3 Testing
Emulab presents unusual testing challenges for two reasons:
i) It is inherently coupled to physical artifacts which, un-
like software state, cannot be cloned. This makes full test
and regression runs impossible. ii) Its mission is to pro-
vide a public evaluation platform for arbitrary programs.
This mission simultaneously puts a premium on accuracy
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and precision, while presenting a fundamentally unknow-
able workload. Combined, these two reasons also mean that
Emulab must run continuously, even as its software radi-
cally evolves.

We have countered with the following procedures. First,
we have created an 8-node version of the Emulab testbed,
Minibed. It serves some, but not all, of our testing needs.
As an independent version of Emulab, Minibed is also key
in developing federated Emulabs.

Second, we have integrated support for testing through-
out the Emulab software suite. In addition to the normal op-
erating mode, all of our software supports a “test mode” in
which any operations that normally affect hardware are pre-
vented. It allows us to make duplicate installations of Em-
ulab databases and software, including web interfaces and
daemons, and to run tests of the software without requiring
exclusive access to hardware. We also have incorporated a
“full-test mode,” in which we can reserve hardware in the
master Emulab database, and use that hardware in conjunc-
tion with the duplicate database and software. One feature
that makes this possible is database-driven, node-specific
redirection to alternate daemons and databases.

Third, we developed a comprehensive regression test
suite that is run nightly, and optionally at compile time.
However, Emulab’s recent jump in complexity is starting to
exceed the capability of these point tests. Therefore, we are
creating a few end-to-end regression testing programs that
exploit Emulab’s automation and programmability to sweep
through “all” Emulab variables (14 today), currently result-
ing in 232 measured values—an incomplete set. The key to
managing this apparent complexity is to measure only a sin-
gle easily-obtained value, such as the end-to-end through-
put on a single TCP connection. The experiment is config-
ured so that every value of every parameter will indirectly
affect the measured value. We expect these programs, with
tuning, to be sensitive regression tests of end-to-end Emu-
lab function.

5 Efficiency
In this section we evaluate Emulab’s performance, includ-
ing detailed analysis of the main challenges to efficiency.
We include comparisons to the measured costs of manu-
ally setting up small experiments, and an analysis of the im-
proved resource use provided by Emulab’s time- and space-
sharing.

5.1 Experiment Creation and Swapping
We timed the creation of experiments of various sizes, both
with and without disk loading at experiment creation-time.
Most experiments fall in the former category, as our de-
fault dual-OS disk images prove sufficient for most experi-
menters. Loading at experiment creation time is only nec-
essary when a custom disk image is requested, since Emu-
lab reloads each node with the default image as soon it is
freed from an experiment. Experiment creation duration is
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Figure 4: Time to create an experiment without disk loading. Stages shown
account for 99% of the total, which is the top line. The other stages of
experiment creation account for the remainder.

essentially equal to the swapin duration of a swapped-out
experiment. This equality is due to the insignificant cost of
parsing thens input file and creating our IR, compared to
the cost of realizing a topology.

Figure 4 shows the time it takes to create experiments
without disk reloading. The most time-consuming stages of
experiment creation are shown on the graph. First, a map-
ping to physical resources is done by ourassign program.
Then, those resources are reserved into the experiment, and
setup, such as cleaning console logs, is performed. Nodes
are rebooted in parallel, in groups of eight, so as not to over-
stress network resources. Finally, we wait for all nodes to
come back up before reporting to the experimenter that their
experiment is ready. Throughout the process, we use par-
allel operations as much as possible to reduce setup time.
For example, though it takes non-negligible time, our setup
of VLANs for the experiment does not show up as a cause
of experiment creation time scaling, because it is done in
parallel with the longer step of rebooting nodes.

The single-node experiment takes 135 seconds, of which
the majority is spent rebooting the node and waiting for it
to return to multiuser mode. Each additional node adds a
marginal cost of approximately 3.4 seconds.

With automatic disk loading, experiment creation takes
longer, as shown in figure 5. A single node experiment takes
351 seconds with an average-size disk image. However,
creation time still scales linearly, and the marginal cost for
adding more nodes is still just 4.8 seconds, on average.

When rebooting large numbers of nodes, occasionally
some fail to come up properly—such is the nature of com-
modity PC hardware. Emulab watches for such occur-
rences, and through issuing a “ping of death” and perhaps
a power cycle, attempts to bring up nodes that fail to boot
initially. As a result, experiment creation occasionally takes
longer, but experiments rarely fail due to transient hardware
faults.
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5.2 Virtual to Physical Mapping
Mapping of virtual to physical resources must be done effi-
ciently or it could dominate experiment creation time. We
now explore the performance of our two mapping programs,
one for mapping Emulab-local hardware and one for map-
ping distributed resources.

Mapping to Emulab-local Resources:Emulab has kept
detailed logs of every successful experiment since June
2001, and in less than a year has accumulated data on over
2000 experiments. From this data we have collected per-
formance information for each experiment. Analysis shows
that a reliable indicator of the difficulty of a mapping prob-
lem is the number of virtual nodes (vnodes) the user re-
quests. The performance is indicated by the runtime ofas-
sign . We added a general notion of resource equivalence
classes toassign in December 2001; Figure 6 demon-
strates the resulting improvements. The new version takes
less than 13 seconds on even the largest topologies, and less
than 5 seconds for most experiments.

Mapping to Wide-area Resources: We conducted two
experiments to test the performance of the “WAN solver”
genetic algorithm. The first mapped a wide variety of exper-
imental topologies onto our current set of 16 WAN nodes,
while the second mapped a variety of experimental topolo-
gies onto a synthetic set of 256 WAN nodes.

For the first set of statistics, we chose 48 (node-count,
link-count) pairs to represent a cross-section of experiment
complexities. For each of these pairs, we ran hundreds of
tests on automatically generated topologies. Figure 7 shows
the average time the solver took to find its final solution for
each complexity. Interestingly, mappings using all 16 nodes
were found much faster than mappings using most, but not
all, of the nodes. The results show that for modestly sized
experiments, the solver does not contribute noticeably to
the total experiment setup time, nor is it prohibitively slow
for experiments involving most of the currently available
nodes.

For the second set of statistics, we generated a physical
topology of 256 WAN nodes, as well as an experimental
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topology for each of a variety of experiment complexities.
The results of running the solver on each topology show
that as experiment complexities grow, mapping takes sig-
nificantly more time. All experiments with 32 nodes, as
well as all sparse topologies, mapped in a few minutes, but
many dense topologies using most of the nodes took three
hours or more! Similar to the above, topologies using every
node mapped relatively quickly, in minutes. These results
show that the solver will scale well in the medium-term, but
as the WAN hardware base grows dramatically, a more opti-
mized algorithm running in parallel on multiple processors
may be required to provide interactive setup times.

5.3 Disk Loading
Here we further analyze disk loading performance, one of
the main costs in experiment creation and swapin. To iso-
late the cost of disk loading using Frisbee, we pre-create ex-
periments of increasing sizes and manually reload the disks
after the experiment is finished setting up. For each run, all
nodes start loading their disks simultaneously. As Frisbee
uses multicast distribution of images, one would expect it
to scale gracefully, and this is reflected in Figure 8. From
a base time of 88 seconds to load a 3GB (180MB com-
pressed) image on a single node, to an average of 97 sec-
onds per node for 80 nodes. The anomalous data point for
60 nodes (104 seconds) is likely due to transient load on the
image server, but needs to be investigated.

5.4 Scaling of Simulated Resources
We explored the extent to which simulated nodes can be
multiplexed onto physical nodes to increase experiment
scale: it appears that integrating simulated nodes into Emu-
lab provides a scaling factor on the order of 100.

We ran an instance ofnse simulating many constant
bit rate UDP flows, between pairs of nodes on links of
2Mbps/50ms, running at 2Mbps. To measurense’s abil-
ity to keep pace with real time, and thus with live traffic, a
2Mbps/50ms link was instantiated inside the samensesim-
ulation, to forward live TCP traffic between two physical
Emulab nodes, again at a rate of 2Mbps. On an 850 MHz
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Figure 7: Average time for WAN solver to find a final solution for a variety
of experimental topology complexities (node and edge counts.)

PC, we were able to scale the number of simulated flows
up to 105 simulated links and 210 simulated nodes, while
maintaining the full throughput of the live TCP connection.
Past 105 simulated links, the throughput dropped precipi-
tously. We also measurednse’s TCP model on the simulated
links: the performance dropped after 90 simulated links.
(We have improved the performance ofnseby a factor of
two by making some modest changes to its scheduler.)

We also did preliminary validation ofnsevs. real nodes:
nse reported TCP throughput 3% higher than a physical
Emulab node.

5.5 Comparison to Manual Configuration
After a time, it becomes easy to take Emulab’s ease of
use for granted. To add quantitative estimates to our many
anecdotal accounts of Emulab’s value in configuring exper-
iments, we had a student with significant Linux system ad-
ministration experience create experiments manually. This
process included wiring machines together, installing OSs,
and configuring software. His first (learning) trial was
a simple two-node setup with an intervening Dummynet
node. This took 10.4 hours, and the student estimated it
would have taken a full week had not experienced Emulab
staff been present to assist. The second time through he
went much faster, but still took nearly two hours. Emulab
can build a comparable setup, including the installation of a
custom disk image, in six minutes.

He then set up a “dumbell” topology consisting of four
end hosts communicating through two routers, with a sin-
gle traffic generator. This time we assumed the nodes al-
ready had functional OS installations, so we measured sys-
tem configuration, routing setup, and traffic generation. Af-
ter subtracting the time spent learning the new tasks, he fin-
ished in 3.25 hours. The equivalent Emulab time is less than
three minutes.

To give a feeling for the scale involved in automating Em-
ulab’s type of configuration, we counted the number of op-
erations involved in Emulab’s experiment swapin process,
approximately 20% of the entire experiment creation pro-
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cess. We counted operations comparable to steps one would
take in manual configuration, such as creating or updating
configuration files, interacting with the database, and calcu-
lating the mapping of a topology onto the physical network.
We found 233 separate operations just in this portion of ex-
periment configuration.

5.6 Time and Space Sharing
We analyzed Emulab’s historical logs for the last 12 months
to derive quantitative estimates of the value of time-sharing
(experiment swapping) and space-sharing. Although the
behavior of both users and Emulab management would
change without such features, the estimate is still reveal-
ing. Without Emulab’s ability to time-share its 168 nodes, a
testbed of 1064 nodes would have been required to provide
equivalent service. Similarly, without space-sharing, 19.1
years would be required.

6 Validation
In this section we present data that helps validate Emulab’s
behavior. We start with low-level and point aspects of the
system, progressively moving to more comprehensive eval-
uations.

6.1 Switch Effects
One of Emulab’s fundamental mechanisms is the flexible
and accurate emulation of a connection between any two
(local) nodes. The flexibility is attained by having all nodes
connect to a programmable switch and by inserting “WAN
emulator” nodes between pairs of hosts to achieve desired
bandwidth, delay, and packet loss characteristics. In the
following two sections we evaluate the accuracy of our em-
ulation.

To characterize the delay introduced by the Cisco
switches we measured the round-trip time (RTT) of packets
sent between two nodes, first with the nodes directly con-
nected via Cat5 crossover cables, and then with the nodes
connected via a VLAN in the switch.
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packet RTT RTT per-byte
length direct (�s) switch (�s) overhead

64 63.4 92.1 0.22
256 102.2 176.7 0.15
512 143.0 266.7 0.12
1024 225.1 445.2 0.11
1518 297.1 601.3 0.10

Table 2: Measurement of packet round-trip time (RTT)

The two nodes run minimal OSKit kernels, so that
scheduling and other overheads found in a full multi-
processing kernel could be eliminated. The first node runs
the request kernel which serially transmits simple UDP
packets and waits for a reply. The second node runs there-
ply kernel which reverses the MAC and IP addresses and
sends the packets back through the same interface.re-
quest records the time at which it transmits and receives
each packet, producing the resulting round-trip time.

Table 2 summarizes the results of the two tests for various
packet sizes. While in percentage terms the difference is
significant, in absolute terms it is quite reasonable. Cross-
ing the diameter of our switch topology at its longest point,
which entails crossing two trunk links, adds 9�s(10%) to
the round-trip time for a 64-byte packet.

Another switch-related concern is thatswitch manage-
ment, such as setting up VLANs, not affect unrelated exper-
imental traffic. To check this, we sent constant high-speed
packet streams between nodes, while setting ports up/down
and creating/removing VLANs. Those are the frequent op-
erations associated with creation and termination of experi-
ments. In all cases, the resulting per-packet mean round-trip
time and standard deviation were the same as for control
streams which experienced no concurrent switch configura-
tion.

6.2 WAN Emulator Node Effects
There are two concerns with using off the shelf PC’s and a
general purpose OS as WAN emulator nodes. One is per-
formance: whether the machine can keep up with the net-
work when the emulated links are operated at full speed.
The more important issue is how accurate are the emulated
delays, bandwidths, and packet loss rates.

As a capacity test, we generated streams of UDP round-
trip traffic between two nodes, with and without an emulator
node in between. We found that, for 1518-byte packets, the
emulator node has no adverse effect: either configuration
can easily saturate a 100Mb link. With 64-byte packets, the
two nodes can exchange 45000 packets (2.9MB) per sec-
ond when connected directly versus 30000 (1.9MB) when
joined by an emulator node. Note that these are round trip
measurements, so the packet rates with and without the em-
ulator node are really twice the numbers reported above.

We then ran another series of experiments to characterize
the emulator node, by sending traffic at the node’s full ca-
pacity, and measuring how faithfully it emulates link delay,
bandwidth and packet loss rate. Tables 3, 4 and 5 summa-
rize these experiments.

packet expected observed % 90% confidence
length RTT (ms) RTT (ms) error interval

5 ms delay
64 10 10.036 0.036 10.034 - 10.037

1518 10 10.293 2.93 10.261 - 10.325
300 ms delay

64 600 601.271 0.21 601.26 - 601.27
1518 600 602.487 0.41 602.485 - 602.488

Table 3: Measured accuracy of delay emulation as a function of packet
size and link delay. The link bandwidth was unlimited and the link loss
rate was 0.0. The sample size was 10000 for 64 byte packets and 1000 for
1518 byte packets.

link bandwidth observed bandwidth % error std. dev.
75 Mbps 74.87 Mbps 0.17 0.028
10 Mbps 9.97 Mbps 0.30 0.004

Table 4: Measured accuracy of bandwidth emulation as a function of link
bandwidth. The link delay was 0ms and link loss rate was 0.0. Traffic
consisted of 1518-byte packets at 8Kpps.

link loss rate observed loss rate % error std. dev.
0.01 0.0101 1 0.002
0.5 0.5018 0.36 0.001

Table 5: Measured accuracy of packet loss rate emulation as a function of
link loss rate. The link bandwidth was unlimited and the link delay was
0ms. Traffic consisted of 1518-byte packets at 8Kpps.

6.3 Event System
The Emulab event system consists of four components:
a master event server, per-experiment event schedulers, a
dynamic event generation tool, and various event clients.
The event messaging model and master event server are
taken from Elvin [41], a notification and messaging ser-
vice. While Elvin supports a flexible, content-addressable
messaging model, Emulab defines a small set of fixed mes-
sage types, usingelvind to handle event subscriptions
and distribute notifications according to those subscriptions.
Since elvind is only an event dispatcher, we have an
event scheduler to queue events until their trigger time, at
which point they are sent to the event server for immedi-
ate delivery to interested parties. The event scheduler starts
by extracting static, ns-specified events from the database
but it also handles dynamically generated events from the
event generation tool. The event generation tool is a simple
command-line tool, using a syntax similar to that in the ns
file, for generating various events at specified times. Cur-
rent clients of the event system include traffic generators,
a delay node control agent and a general remote execution
facility.

Since events are scheduled and queued centrally on
masterhost and distributed at the time of firing, it is im-
portant that events be delivered in a timely fashion to ensure
event firing accuracy. For individual node events, we expect
the latencyof event delivery to be on the order of the one-
way trip time betweenmasterhost and the node. For
events that are to occur simultaneously on multiple nodes,
there is an additional issue to consider. Since our Elvin mas-
ter event server does not currently use multicast for event
distribution, there will be someskewbetween the first and
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node event stdev clock
delay (ms) offset (ms)

pc39 0.637 0.136 0.441
pc24 0.177 0.140 0.677
pc16 0.936 0.142 0.316
pc32 1.124 0.133 0.173
pc27 1.091 0.136 0.249
pc21 1.225 0.137 0.152
pc30 1.223 0.135 0.217
pc25 1.016 0.138 0.301
pc31 1.362 0.138 0.120
pc33 1.963 0.139 -0.143
pc38 1.300 0.140 0.186
pc26 1.814 0.139 -0.032
pc28 2.207 0.136 -0.279
pc34 0.403 0.134 0.603

Table 6: Event notification delay as measured between event dispatcher
and client, averaged over 10 runs. Nodes in the table are listed in the order
in which the event was dispatched to highlight skew. “Clock offset” is
thentp measured offset between the node’s local clock and the reference
clock onmasterhost (the source of the event).

last nodes receiving the event.
To measure the latency and skew of event delivery, the

per-experiment event scheduler was modified to record a
timestamp prior to passing an event toelvind for dis-
patch. A special event client was then run on all nodes
within an experiment. This client received events, extract-
ing the time stamp and comparing it with the local current
time. After compensating for clock skew between the node
andmasterhost , the result is the delivery latency. An
experiment was created with 15 nodes and an event “broad-
cast” to all nodes for their capture. The event was sent 10
times and the per-node times averaged. Table 6 summarizes
the results, with one node omitted due to an unacceptably
inaccurate clock. As delays are on the order of the reso-
lution of clock synchronization, the results are highly vari-
able but clearly quite small. A general trend can also be
seen, with delay increasing by around 2ms between the first
and last nodes notified, demonstrating that there is a modest
skew.

6.4 Validation Against the Wide-Area
In this section we outline two macrobenchmark compar-
isons between real Internet nodes and corresponding con-
figurations on Emulab. The first example also demonstrates
Emulab’s flexibility and the transparency of its WAN link
specification.

Distributed Multiplayer Game: Besides validation be-
tween Emulab’s distributed nodes and its local nodes, in this
experiment we also demonstrated Emulab’s ability to map
requested WAN links into the best-matching live Internet
links. We have 5 synthetic clients of the standard multi-
player game “DOOM.” The communication protocol used
by this version of DOOM is simple (and stupid). At a target
rate of 30 times per second, each client sends unicast pack-
ets to all other clients, doing so only once it has received all
the prior period’s packets from its peers.

Live Internet Emulated
tics stddev retransmits tics stddev retransmits

Fast 29 0.00 1.10 28 0.67 1.10
Slow 21 0.73 1.70 21 0.52 2.80

Table 7: Median “tic” rates and packet retransmission counts achieved by
“DOOM” clients, both on live Internet and emulated links. Numbers are
repeated both for nodes with uniformly fast links, and with some slower
links mixed in.

We evaluated DOOM on four network configurations,
making at least four repeated runs on each. We specified
the desired latency and bandwidth of the 10 links that cre-
ate a fully-connected graph between all five clients.

For the first configuration, by giving a node type of
pcvremote in the ns file, we specified that the nodes
be wide-area (“remote ”) and they be virtual nodes (“v ”),
i.e., multiplexed onto some set of the physical remote
(RON) nodes. Emulab’s mapping phase, the genetic algo-
rithm described in Section 4.1.2, found the best-matching
Internet links from among the wide-area nodes that still
had available virtual node “slots.” (If we had preferred
coarser-grained specification of the wide-area experiment,
instead of giving link characteristics we could have re-
quested virtual nodes by wide-area (last mile) subtype,
such as “pcvinet2 ” (Internet2) and “pcvintl ” (inter-
national).)

For the second configuration we used the same link spec-
ification, but by changing just one line (inside a Tcl loop)
that set the node type, we obtained Emulab-local nodes and
emulated links. The third and fourth configurations were
analogous to configurations one and two, but we requested
some substantially slower links, with the goal of demon-
strating an application-visible effect.

The results were good, as presented in Table 7. The two
key metrics in DOOM are “tic rate” and packet retransmis-
sion. Tic rate in this example is affected primarily by la-
tency, and represents the rate at which progress is made
in the system—a higher tic rate indicates faster progress.
Packet retransmission rates are governed by bandwidth and
packet loss rate; there are typically only a handful of re-
transmitted packets per trial.

Wide-Area Database Replication: Researchers at
Johns Hopkins University are studying group communica-
tion mechanisms for wide-area replication of databases. In
the course of their research they compared results from the
CAIRN wide-area network [12] to their results on local Em-
ulab hardware, with Emulab links emulating the delay and
bandwidth characteristics they observed in CAIRN. As re-
ported in their technical report [5], their application-level
measurements of communication characteristics matched
well. Emulab offered them two other advantages over
CAIRN: due to the control offered by Emulab, they were
easily able to study the effects on their system of varying
network characteristics. Secondly, they could obtain nodes
all of the same type, unlike on CAIRN. In summary, after
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obtaining baseline data from the Internet, Emulab’s control
and repeatability let them better study the effect of network
characteristics on their system.

7 Case Studies and Experience
7.1 TCP Dynamics
Network simulators, such asns, have proven invaluable in
studying TCP behavioral dynamics [19]. Because of ab-
stractions such as lack of a CPU utilization model and one-
way protocols with simplified window and ACK behavior,
simulation should be validated empirically. Ironically, the
potential for bugs and unspecified design parameters mean
that real implementations do not necessarily define valid be-
havior, either. Nevertheless, the notion of “deviant behav-
ior” [16] allows us to simultaneously gain confidence in the
validity of simulation and the correctness of implementa-
tion.

Thensmaintainers run nightly regression tests [32]. Em-
ulab’s transparent ability to parsens scripts means these
scripts can instead be used to validatens behavior against
emulation. Further, the tests may drive regression testing
of a kernel implementation or a comparison across several
implementations. This section presents preliminary results
that show the feasibility of automating this process. The
study of low-level, fine-grained TCP dynamics shows Em-
ulab’s flexibility in modulating a virtual network at various
scales.

This approach is a general and powerful means of testing
or validating the dynamic behavior of network protocols as
realized in kernels or within simulation. Our framework
executes a test script withinnsand parses output trace files
to determine where to generate traffic, which packets are
dropped, and which links suffer losses. It then configures
a network topology via Emulab’s event system and passes
a list of target drop packets to the correct Dummynet node.
Again via the event system, the framework starts a program
object to record packet traces and finally invokes the traffic
generators.

Figure 9 shows a simple test from thensvalidation suite
that drops a single packet in a TCP New Reno stream. The
nsand FreeBSD 4.5 senders detect a Triple Duplicate ACK
and perform a Fast Retransmit immediately. By contrast,
we discovered that FreeBSD 4.3 does not retransmit un-
til triggered by a timer expiration, which greatly degrades
throughput.

This example highlights the potential of automating com-
parison of simulation and emulation. The apparent visual
similarity of the graphs is supported by statistics. FreeBSD
4.5 achieves a mean bandwidth of 50232.4 Bps over 10 ex-
periments, with a standard deviation of 4.09.nsachieved a
mean throughput of 48090 Bps.

Secondly, this example shows the merit of automated re-
gression testing applied to large, evolving software systems.
The behavior in FreeBSD 4.3 is caused by an uninitialized
variable. A thorough application of the full suite of TCP
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Figure 11: Comparison of Simulated, Emulated, and Analytic TCP Perfor-
mance

tests may well uncover additional bugs. Such subtle bugs
would be exceeding difficult to detect and reproduce with-
out Emulab’s fine-grained control. Our initial work in
automating TCP regression testing has also led to the dis-
covery of a discrepancy between the New Reno Fast Re-
transmit [27] implementation in FreeBSD 4.5 and the cor-
responding RFC [18].

Figure 10 depicts another scenario from thens test suite
that drops three packets during New Reno Slow Start.
Again,nsreacts gracefully to the losses, retransmitting each
in a timely fashion. The last loss under FreeBSD 4.5 in-
duces a retransmission only after a timeout. This TCP
implementation confounds the “send high ” and “re-
cover ” variables discussed in the New Reno Fast Recov-
ery RFC [18], using instead a single “snd recover ” vari-
able. This results in overly eager invocation of the False
Fast Retransmit algorithm [27], which suppresses Fast Re-
transmission.

7.2 TCP Latency Modeling
Analytic TCP models [37, 13] tend to be both heavily pa-
rameterized and heavily dependent on network assump-
tions, including independent packet loss, specific queue dis-
ciplines, and zero scheduling or buffering overhead. The
former feature often motivates parameter-space exploration
through simulation, while the latter calls for validation on
real hardware. These two goals are generally at odds with
one another, forcing an experimenter to make concessions
to one or the other. By leveraging Emulab’s automation and
control, we were able to explore a parameter space consist-
ing of 50 iterations each of 23 loss rates. After experiment
creation, the results were collected without experimenter in-
tervention.

These results are plotted alongside their analytic and sim-
ulated counterparts in Figure 11. In all cases, 1MB is trans-
ferred across a link with a 50ms delay. Data points for sim-
ulation and emulation represent averages of 50 iterations
and are plotted with 90% confidence intervals.

Simulation and the analytic model exhibit average errors
of 7% and 19% respective to emulation. The discrepancy
betweenns and the analytic model is consistent with the
findings of Cardwell et al. The simplicity of emulating a
large range of parameters allows an experimenter to gauge
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an analytic model’s sensitivity to its assumptions. For ex-
ample, we could easily study the model’s applicability to
RED queues, which are inconsistent with the model’s as-
sumption of drop-tail behavior.

7.3 The Armada I/O Framework
This example from others’ research demonstrates the value
that Emulab’sautomationbrings to experimental evalu-
ation; it is further described in a technical report [36].
Automation enables easy exploration of large parameter
spaces, as one can do in simulation.

Dartmouth’s Armada[35] system is designed to improve
I/O in computational grids. The results it obtains depend
highly on the bandwidth, latency, and packet loss rate of the
wide area network connecting the nodes or LANs involved.
They ran experiments that tested every possible combina-
tion of 7 bandwidths, 5 latencies, and 3 application param-
eter settings on four different configurations of the Armada
system on a set of 20 nodes, performing a total of 420 differ-
ent tests in 30 hours, averaging 4.3 minutes each. Because
Emulab supports such high levels of automation, this was
all done inside one experiment.

7.4 The “Average” Project/User
Emulab currently has 201 users in 58 different projects,
with a few users belonging to more than one project. 49
of those projects have been active enough to configure one
or more experiments. Excluding our own Emulab devel-
opment work, the most active project has created over 400
experiments, and three others have created more than 100.
Three of our most consistent users have each had 8–12
nodes in almost constant use for 6–8 months at a time.

Almost half of the projects using Emulab are working on
distributed systems research, and about 40% on networking

research. The remainder is split between Active Networks
research, instructional use for classes, and use of Emulab
as a computational cluster. Clearly, Emulab is success-
ful as a tool, and has wide appeal among several areas in
the field. The wide variety of projects using Emulab illus-
trate how its features are important for these projects. For
instance, educational users of Emulab (primarily OS and
networking classes at remote universities) have enjoyed the
isolation and protection we offer, which makes Emulab one
of the only places where they can safely give their under-
graduate students root access. Network researchers, on the
other hand, find Emulab’s ability to set up arbitrary network
topology to be vital.

7.5 The “Average” Experiment

Emulab is in a unique position to characterize the needs of
network and distributed systems experiments. We have a
sample of over 2000 experiments, presumably representa-
tive of large classes of research in these areas. From this
sample we’ve extracted information that will be useful in
recognizing the experimenters’ requirements. For exam-
ple, the most frequent experiment size was two nodes, even
though many more nodes are typically available. We at-
tribute this to development and debugging work in prepa-
ration for larger scale experimentation. The distribution of
experiment sizes is multi-modal, with another mode at 15–
20 nodes, and smaller modes near 30 and 40 nodes. We be-
lieve that another significant mode would be at much larger
scales, such as those typical of peer-to-peer overlay net-
works, in in the hundreds or thousands of nodes. We are
currently analyzing our logs to determine the distribution
of numbers of links—which is confounded by the high in-
cidence of LANs that experimenters specify.
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7.6 Non-IP Protocols
Ideally, Emulab’s local nodes should be usable by exper-
iments involving protocols that are not IP-based, and that
was one of our original goals. However, there are two
known issues that limit the ability to do this. First, node
names are virtualized at the IP level: IP addresses within
an experiment remain constant across swapins. The ideal
solution would be to virtualize at the link layer, but that re-
quires additional interaction and synchronization with the
Emulab switch fabric. An easier solution is to abstract Em-
ulab’s notion of an address and continue to virtualize above
the link layer. The second problem is that the standard
tools used within Emulab are primarily, if not exclusively,
IP-based. This includes the OSes, Linux and FreeBSD,
routing agents, DNS, DHCP, Dummynet, and the tunneling
code. Some may be easily extended to work with arbitrary
protocols, but in general, providing complete replacements
would be a significant task.

8 Related Efforts

Emulab uses well-known experimental infrastructure as
building blocks, particularlyns [42], the nse emulation
facility [17], Dummynet [40], and the RON wide-area
testbed [6]. Emulab’s novelty is its ability to integrate these
techniques in a manner that provides ease of use, control,
and realism. For example, whilenseprovides the mecha-
nism that allows simulated traffic generators to affect real
links, establishing such a scenario without Emulab requires
manual configuration.

ModelNet [43] is a large-scale network emulation facil-
ity that utilizes a gigabit cluster serving as a router core to
deliver packets to edge nodes. ModelNet most closely ap-
proaches Emulab’s automatic configuration of physical re-
sources by distilling a target topology specified in any num-
ber of high-level formats. However, as ModelNet focuses
on scalability, it does not extend this automation to consis-
tent control over heterogeneous physical and simulated re-
sources. Like other emulation mechanisms, including trace
modulation [34] and NIST Net [33], ModelNet is a compli-
mentary approach that can be deployed in place of or along-
side Dummynet.

Trace modulation [34] recreates observed end-to-end
characteristics of a wireless network. Interposing trace
modulation instead of Dummynet would provide support
for wireless links in Emulab.

Over the past decade there have been a large number of
additional network emulation efforts. These include hit-
box [3], the Ohio Network Emulator (ONE) [4], and Rice’s
support for evaluating their web-oriented kernel and OS op-
timizations [38, 8]. One of the earliest and largest uses of
emulation was a twelve node deployment at USC in 1994,
used to study TCP Vegas [3]. They cite an emulator ef-
fort at Bell Labs [29], which apparently started to build
a more general emulator. Another category is represented

by Michigan’s “Orchestra” fault-injection system [15]. Al-
though there have been exceptions, typically these single
node emulators were tailored for a specific research applica-
tion, were (or are) not well supported or widely distributed,
and have not been widely adopted by external users.

The “Access” project [7] originated the vision of a dis-
tributed set of testbeds. They explored the feasibility of
building a set of small testbeds, distributed over many sites
around the world. The Access vision overlapped with Emu-
lab in our shared emphasis on completely replaceable node
software, our operational model of a Web-accessible mas-
ter control host, and provision of power control and serial
console lines. However, we differ in many other respects.
Fundamentally, Access did not intend to provide an emula-
tion facility, did not have our emphasis on ease of use, nor
did it intend to offer integration. They did recognize a need
we identified only later, for real wide-area links for some
experimenters.

Network simulators successfully isolate protocol dynam-
ics but may do so at the expense of accuracy. Therefore,
results from simulators such asns [42] and GloMoSim [1]
may not be valid indicators of deployed performance [20].
Brakmo and Peterson [10] highlight differences between
simulated and implemented TCP protocols. They present
x-sim, a simulator which avoides inaccuracies by embed-
ding actual protocol code. However, this approach requires
the non-standardx-kernel.

Heidemann et al. describe means of gaining confidence
in network simuation [25]. The integration of simulation
within a live experimental environment provides another
validation opportunity. This idea leverages the simultane-
ous integration of simulated nodes with physical nodes to
provide greater scale through simulation tempered by the
realism of emulated or wide-area nodes. Physical nodes
are integrated with simulation to detect possible inaccura-
cies. For example, if simulation is sufficiently accurate for a
given application, simulated and emulated nodes should ex-
hibit similar behavior under careful scrutiny. Secondly, this
hybrid approach should be largely indistinguishable from
pure simulation.

Emulab’s design and the problems encountered along the
way have relevance outside the domain of network experi-
mentation. In particular, Emulab offers a unique perspec-
tive on cluster management. Most existing systems, in-
cluding GLUnix [23], PBS [26], Condor [30], LSF [46],
and Ganglia [14] mask a multitude of physical nodes be-
hind the illusion of a single virtual interface. This virtu-
alization is provided bysoftware– often in user-level li-
braries. Emulab instead virtualizeshardware. This dis-
tinction has important consequences. For example, because
of their relatively high level of interposition, these systems
generally can not checkpoint processes that fork or perform
IPC. An as yet unimplemented design of checkpointing un-
der Emulab seamlessly copes with forked process and IPC
because it captures and recreates a node’s entire hardware
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state. Oc´eano [2] provides an application-hosting “comput-
ing utility powerplant” by similarly virtualizing hardware
resources. This project also employs VLANs and automatic
node reconfiguration. However, reconfiguration is driven
by Service Level Agreements. Since the system is not de-
signed as an experimental testbed, it does not expose virtual
network resources to user control.

9 Conclusion

We have presented Emulab– software that provides an ex-
perimental platform for local- and wide-area network re-
search. Emulab leverages the strengths and diversity of em-
ulation, simulation, and live wide-area networks to reach
levels of ease of use, realism, and control unsurpassed by
other experimental environments. Emulab gives experi-
menters access and control over virtual nodes and links, in-
tegrated behind a consistent and familiarns interface. It
manages the topology to allow a packet to traverse simu-
lated, emulated, and wide-area links along its path from one
virtual host to another.

We have begun designing extensions to Emulab that will
integrate a new class of virtual nodes to extend its near ef-
fortless setup, configurability, and repeatability into the mo-
bile, wireless domain [45]. Emulab will exploit a large,
dense set of wireless devices via mobile, passive couri-
ers that move predictably in time and space. We will use
two types of couriers: students moving from class to class
with radio-equipped PDAs, and city and campus busses
with wireless PCs. Both exhibit predictable movement pat-
terns. To accommodate purely static experiments, Emu-
lab will consist of a dense deployment of wireless devices
throughout campus, indoors and out. Experimenters will
specify their desired network and, for mobile experiments,
its nodes’ movements; our software will select the subset of
nodes that best match.

To accomodate larger-scale environments, we are exam-
ining the federation of single-site Emulab instances. From
an experimenter’s perspective, federated resources will look
much like current wide-area virtual nodes and links. How-
ever, integration of these resources presents new challenges
and opportunities. A centrally-administered federation is
faced with a scalability barrier due to economic, market,
and political limitations. Further, indirection through a sin-
gle, remote manager threatens availability by placing con-
trol of local resources elsewhere. By constrast, our vision
is analogous to the Internet, in which wildly physically di-
verse, autonomously developed and administered networks
interconnect only at their boundaries to from an “InterNet-
work,” yet expose interior nodes by direct addressability.
The sheer flexibility, scale, and autonomous administration
of such a federation addresses the current needs of overlay
and peer-to-peer network research and creates the very con-
ditions most conducive to the rise of new “killer apps”.
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[2] The Océano Project. http://www.research.ibm.com/oceanoproject/.

[3] J. S. Ahn, P. B. Danzig, Z. Liu, and L. Yan. Evaluation of TCP Vegas:
Emulation and Experiment. InProc. of SIGCOMM ’95, pages 185–
195, Aug. 1995.

[4] M. Allman, A. Caldwell, and S. Ostermann. ONE: The Ohio Net-
work Emulator. Technical Report TR–19972, Ohio University Com-
puter Science, Aug. 1997.

[5] Y. Amir et al. Practical Wide-Area Database Replication. Technical
report, Johns Hopkins University, 2002. http://www.cnds.jhu.edu/-
pub/papers/cnds-2002-1.pdf.

[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient
Overlay Networks. InProc. 18th SOSP, pages 131–145, Oct. 2001.

[7] T. Anderson. A Case for Access: A High Performance Commu-
nication and Computation Environment for Wide Area Distributed
Systems, Networking, and Applications Research. http://www.cs.-
washington.edu/homes/tom/access/.

[8] G. Banga, J. Mogul, and P. Druschel. A Scalable and Explicit Event
Delivery Mechanism for UNIX. InProc. of the 1999 USENIX An-
nual Technical Conf., June 1999.

[9] P. Barford and M. Crovella. Generating Representative Web Work-
loads for Network and Server Performance Evaluation. InMeasure-
ment and Modeling of Computer Systems, pages 151–160, 1998.

[10] L. S. Brakmo and L. L. Peterson. Experiences with Network Simu-
lation. InProceedings of ACM SIGMETRICS’96, May 1996.

[11] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Y. Xu, and H. Yu. Advances in
Network Simulation.IEEE Computer, 33(5):59–67, May 2000.

[12] CAIRN: Collaborative Advanced Internet Research Network. http://-
www.isi.edu/CAIRN/.

16



[13] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP Latency.
In Proc. of INFOCOM ’00, Mar. 2000.

[14] B. Chun and M. Massie. Ganglia Cluster Toolkit. http://-
ganglia.sourcefourge.net/docs/ganglia.pdf.

[15] S. Dawson, F. Jahanian, T. Mitton, and T.-L. Tung. Testing of Fault-
Tolerant and Real-Time Distributed Systems via Protocol Fault In-
jection. InProc. International Symposium on Fault-Tolerant Com-
puting, June 1996.

[16] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
Deviant Behavior: A General Approach to Inferring Errors in Sys-
tems Code. InProc. 18th SOSP, Oct. 2001.

[17] K. Fall. Network Emulation in the Vint/NS Simulator. InProc. of
the 4th IEEE Symposium on Computers and Communications, 1999.

[18] S. Floyd and T. Henderson. The NewReno Modification to TCP’s
Fast Recovery Algorithm. Internet Request For Comments 2582,
Internet Engineering Task Force, Apr. 1999.

[19] S. Floyd and V. Paxson. Difficulties in Simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4):392–403, Aug. 2001.

[20] S. Floyd and V. Paxson. Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking, 9(4), August 2001.

[21] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.
The Flux OSKit: A Substrate for OS and Language Research. In
16th SOSP, pages 38–51, Oct. 1997.

[22] M. R. Garey and D. S. Johnson.Computers and Intractability: A
guide to the theory of NP-completeness. W. H. Freeman, 1979.

[23] D. Ghormley, D. Petrou, S. Rodrigues, A. Vahdat, and T. Ander-
son. GLUnix: a Global Layer Unix for a Network of Workstations.
Software— Practice and Experience, 28(9), July 1998.

[24] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K. Lan,
Y. Xu, W. Ye, D. Estrin, and R. Govindan. Effects of Detail in
Wireless Network Simulation. http://www.isi.edu/˜johnh/PAPERS/-
Heidemann00d.html, Sept. 2000.

[25] J. Heidemann, K. Mills, and S. Kumar. Expanding Confidence
in Network Simulation. IEEE Network Magazine, pages 58–63,
Sept/Oct 2001.

[26] R. L. Henderson and D. Tweten. Portable batch system: Require-
ments specification. Technical report, NAS Systems Division, NASA
Ames Research Center, 1995.

[27] J. Hoe. Improving the Start-up Behavior of a Congestion Control
Scheme for TCP. InSIGCOMM ’96, Aug. 1996.

[28] IXP1200. http://developer.intel.com/design/network/products/-
npfamily/ixp1200.htm.

[29] A. M. Lapone, N. F. Maxemchuk, and H. Schulzrinne. The Bell Lab-
oratories Network Emulator. Technical Report BL0113820-930913-
64TM, AT&T Bell Labs, Sept. 1993.

[30] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor— A Hunter of
Idle Workstations. InProc. of the 8th International Conference on
Distributed Computing Systems, pages 104–111, 1988.

[31] P. E. McKenney, D. Y. Lee, and B. A. Denny.Traffic Generator Soft-
ware Release Notes. SRI International and USC/ISI Postel Center
for Experimental Networking, Jan. 2002. http://www.postel.org/tg/.

[32] The Network Simulator ns-2: Validation Tests. http://www.isi.edu/-
nsnam/ns/ns-tests.html.

[33] NIST Internetworking Technology Group. NIST Net home page.
http://www.antd.nist.gov/itg/nistnet/.

[34] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H.
Katz. Trace-Based Mobile Network Emulation. InProc. of SIG-
COMM ’97, pages 51–61, Cannes, France, Sept. 1997.

[35] R. Oldfield and D. Kotz. Armada: A parallel file system for com-
putational grids. InProc. of IEEE/ACM International Symposium
on Cluster Computing and the Grid, pages 194–201, Brisbane, Aus-
tralia, May 2001. IEEE Press.

[36] R. Oldfield and D. Kotz. Using the Emulab network testbed to eval-
uate the Armada I/O framework for computational grids. Technical
report, Dartmouth College, May 2002. ftp://ftp.cs.dartmouth.edu/-
pub/raoldfi/armada/oldfield:armada-emulab-tr.pdf.

[37] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: A simple model and its empirical validation. InProc. of
SIGCOMM ’98, Sept. 1998.

[38] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A Unified I/O
Buffering and Caching System. InProc. of the Third Symposium on
Operating Systems Design and Implementation, pages 15–28, New
Orleans, LA, Feb. 1999.

[39] PXE Preboot Execution Environment Specification Version 2.1.
ftp://download.intel.com/ial/wfm/pxespec.pdf.

[40] L. Rizzo. Dummynet and Forward Error Correction. InProc. of
the 1998 USENIX Annual Technical Conf., New Orleans, LA, June
1998. USENIX Association.

[41] B. Segall and D. Arnold. Elvin Has Left the Building: A Pub-
lish/Subscribe Notification Service with Quenching. InProc. of the
1997 Australian UNIX and Open Systems Users Group Conference
(AUUG ’97), Brisbane, Australia, Sept. 1997.

[42] The VINT Project.ThensManual, Apr. 2002. http://www.isi.edu/-
nsnam/ns/ns-documentation.html.

[43] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, J. Chase, and
D. Becker. Scalability and Accuracy in a Large-Scale Network Em-
ulator. Submitted for publication. http://www.cs.duke.edu/˜vahdat/-
ps/modelnet.pdf, May 2002.

[44] J. Wallerich. Design and Implementation of a WWW Workload
Generator for the NS-2 Network Simulator. http://www.net.uni-
sb.de/˜jw/nsweb/, Aug. 2001.

[45] B. White, J. Lepreau, and S. Guruprasad. Wireless and Mo-
bile Netscope: An Automated, Programmable Testbed. http://-
www.cs.utah.edu/l̃epreau/emulab-wireless.ps. Submitted for publi-
cation in Mobicom’02., Mar. 2002.

[46] S. Zhou, J. Wang, X. Zheng, and P. Delisle. Utopia: A Load Sharing
Facility for Large, Heterogeneous Distributed Computer Systems.
Software— Practice and Experience, 23(2), 1993.

17


