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it leverages, Emulab achieves these goals simultaneously. Table 1: Characteristics of Experimental Platforms

livelock on a heavily-loaded system. Live networks achieve
realism, but surrender repeatability and the ability to mod-
The diverse requirements of network and distributed sys$fy or even monitor internal router behavior. Single-node
tems research are not well met by any single experimentdl/AN emulators such as Dummynet [40] introduce artifi-
environment. Competing approaches remain popular beial delays, losses, and bandwidth constraints to real appli-
cause each covers a different point in a space defined bgtions in a controlled manner, but require tedious manual
levels ofease of usecontrol, andrealism Discrete-event configuration.
simulation, as exemplified bys[42], and live network ex- Emulab spans simulation, emulation, and live network
perimentation represent two extreme techniques. Emulaxperimentation by integrating them into a common frame-
tion [3, 40, 33, 34] is a hybrid approach that subjects realork. This framework provides integrated abstractions, ser-
hardware, protocols, and workloads to a synthetic networkices, and namespaces common to all three environments,
environment. such as node and link allocation and naming, mapping
Emulab offers a complementary alternative to existinghem into domain-specific mechanisms and internal names.
experimental environments. It is a large software systein this way Emulab masks much of the heterogeneity of
and set of tools, that when deployed on an appropriate clute various approaches. Emulab subsumes the above tech-
ter of machines, provides a time- and space-shared platfomigues by automatically allocating simulated, emulated, or
for research, education, or development in distributed sysctual wide-area network links, thus obviating manual con-
tems and networks. Emulab’s primary contribution is thdiguration. While Emulab provides most of the benefits
seamlesmtegrationof the above seemingly disparate tech-of each individual technique, it is much more than a sim-
nigues in a manner that preservestbatrolandease of use ple sum of services. Emulab’s integration means that tools
of simulation, without sacrificing theealismof emulation such as topology and traffic generators that were originally
and live network experimentation. targeted for only one domain are often useable across all
Figure 1 enumerates characteristics of traditional apghree. Furthermore, a particular experiment is not confined
proaches. Each offers unique benefits, thus guarantde-a single experimental technique; it may include simu-
ing their continued importance. For example, simulatiotated, emulated, and wide-area resources.
presents a controlled, repeatable environment. However, itsVersions of this rapidly evolving system have been de-
high level of abstraction may be inappropriate, for examployed at the University of Utah since April 2000, to pro-
ple, when studying the effects of interrupt-induced receiveride a shared, Internet-accessible, research and education

1 Introduction



facility open to the community. Emulab’s success ha®C node, local memory and disk provide ample room for
prompted other institutions to adopt it to build similar fa-local computation and logging of monitoring data.

cilities, and federation is planned. Distributed Nodes: By subsuming the RON testbed,
Emulab now has 16 nodes at remote sites, including nodes
1.1 Design Principles connected via Internet2, DSL, and cable modems. Though
Emulab achieves integration through four primary desigi'€ir shared usage model and administrative policies limit
principles: Emulab’s control over them, they support many of the key

Transparency: An Emulab experiment can consist of features of local nodes. For example, Emulab sets up ac-

simulated, emulated, and wide-area links and nodes. The<@UNts, provides convenient access via distribution of ssh
realizations are essentially transparent to the user, sinkgYS, and automates traffic generation.

links and nodes share a common namespace and are copoimulated Nodes: Network simulation [11] has been
sistently specified imssyntax. widely used to rapidly design, evaluate, and validate

Virtualization: Emulab virtualizes IP addresses, hosts€W _Protocols as well as study existing protocol behav-

and links. This level of indirection allows for control and!©"- Though simulation often abstracts a good deal of de-

configuration of these resources, as well as their efficieff!! [24: 19], it can provide scalability beyond the limits of

time-sharing. It also affords greater scalability by allowing®"ySical resources. Virtual simulated nodes can be muiti-
the seamless multiplexing of virtual devices. plexed on one physical node. Emulab integrates simulation

Automation: Experiment creation involves a large num-troughnss emulation facility,nse[17]. This allows sim-
ber of steps including, for example, configuration of netylated nodes, links, and traffic to be subjected to live appli-

work interfaces, routing tables, and switches, reloading diﬁ@tion traffic.

images, exporting file trees, and configuring traffic genera; . .
tors. Emulab removes the tedium of manual configuratioa%'2 Virtal Network Links
through automation. An integrated event system and tI"Le

. ; X ocal-Area Links: Emulab can easily exploit the large
Turing-complete language, Tcl, that underlies tisenter- . 7
. : . number of local nodes and wealth of available bandwidth
face, help provide arbitrary programmatic control.

- ; . . to realize a switched LAN topology. Rapid and automated
Efficiency: Emulab was designed to make efficient use____. . .
of phvsical resources and to enhance experimenter prod cg_nﬂguratlon of operating systems makes Emulab an attrac-
T phy PE P Ive platform for kernel development and research within
tivity. It manages the shared use of physical resources

provide their greatest possible utilization, while ensuring
inter-experiment isolation. Emulab performs experimerﬁ1
creation, swapping, and termination in a few minutes, e

abling an interactive style of use.

cal-area networks.

All local nodes are connected using high-end switches,
at function as a “programmable patch panel.” To al-
Tow arbitrary topologies within Emulab and provide secu-
rity to Emulab users, we employ Virtual LANs (VLANS).
VLANS are a switch technology that restricts traffic gen-
2 Resources ergted within a VLAN to other machines in that V.LA.N.

) o ) This technology can be used to define subnets within an
As its name suggests, Emulab was originally conceived &xperiment as well as to protect users from others’ stray
an emulation platform. The flexibility of its design hasyaffic. Separate switches are used for the control and ex-
helped it to grow from an emulated “Internet in a room”yerimental networks to provide isolation of control traffic
to a “slice of the Internet.” It now supports a diverse sefgm experiment-generated traffic.
of physical node and link types. Nodes and links are vir- gmulated Links: Emulab uses Dummynet [40] to em-
tualized in the sense that they may be allocated and cofirate wide-area links within a local-area environment. A
trolled largely indepen.dently'of their physical realizationDummynet node lies between two physical nodes and en-
Virtual nodes may be instantiated from a large set of locghces queue and bandwidth limitations, introducing delays
nodes, from a smaller set of distributed nodes, or wittin 54 packet loss. Dummynet nodes act as Ethernet bridges,
simulation. Distributed nodes are currently provided by thg, they are transparent to experimental traffic.

RON [6] t_estbed. \/irtual links may map directly to local- \yjide-Area Links: If experimenters specify no par-
area or wide-area links or may be emulated by Dummyneficjar links to wide-area nodes, they obtain the fully-
interconnected “natural” Internet. However, if they specify
2.1 Virtual Nodes such links, we set up IP tunnels so that distributed nodes
can use “private” IP addresses, maintaining our principle
Local Nodes: The Utah Emulab currently contains 168of virtualization. In conjunction with our automated rout-
PCs that can function as edge nodes, traffic generators,ing setup, an overlay network is automatically created to
routers. Each machine has five 100Mb Ethernet interfacette experimenter’s specifications. These tunnels also allow
one is on a dedicated control and data acquisition networkansparent communication between wide-area nodes and
and the others are for arbitrary use by experiments. At eaexperimental interfaces on our local testbed nodes, so that



st erhost latencies are not a barrier to interactive experimentation.
VRl When interaction is not required, Emulab can fully auto-

mate the process by scheduling and executing batch exper-
iments in the background as resources permit.

As we proceed, we develop an analogy between an ex-
periment and a Unix process. This metaphor illustrates the
life cycle of an experiment and Emulab’s role in automat-
ing and controlling the procedure. Emulab compileshan
specification to synthesize a hardware realization of the vir-
tual topology. The specification is first parsed into an inter-
mediate representation that is stored in a database and later
allocated and “loaded” onto hardware. During experiment
execution, Emulab provides interfaces and tools for experi-
ment control and interaction. Finally, Emulab may preempt
nd “swap out” an experiment.

Figure 1: Emulab Architecture

networks can easily be constructed that contain both “live®

Internet links and emulated Emulab links. This ensures that .

distributed nodes may be seamlessly treated as local noded Accessing Emulab

with respect to traffic generation, routes, and IP addresseEmulab employs a small set of administrative nodes to pro-
Simulated Links: Emulab’s deployment ofis makes Vide a secure interface, as depicted in Figurenaster-

a vast wealth of simulation infrastructure accessible to apost is a secure server for many of our critical systems, in-

emulated or distributed experiment. Emulab can leveragiduding the web server, database, and switch management.

ns rich and diverse protocol suite, varied statistical mod- To minimize administrative overhead, Emulab employs

els, or support for wireless devices. Through its integraa hierarchical structure for authorization. To begin a new

tion with Emulabjnsecan be used to simulate a large-scalg@roject a “leader,” e.g., a faculty member or senior stu-

network within an emulation. For example, the NSWEBdent, submits information through a straightforward web

model [44] is considered to be a very accurate web worknterface. Once the project has been approved by Emulab

load model based on SURGE [9] that can be used to genetalff, authority and accountability is delegated to the project

ate large number of web traffic flows. The close interactioteader.

between simulation and live protocols presents an opportu- The web interface provides a universally-accessible por-

nity to validatens abstractions. tal to Emulab. Needing only a standard web browser, an ex-
perimenter may create or terminate an experiment, view the
2.3 Planned Extensions: corresponding virtual topology, or configure various node

Though these physical realizations have proven successfroperties. The simplicity of this interface ensures that nei-
virtualization ensures Emulab is not bound to them. Plarf§€r manual configuration nor bureaucratic delays are a bar-
are underway to incorporate additional resource type§€r to experimentation.
We are constructing a WAN emulator based on the Intel Having created an experiment, experimenters may log di-
IXP1200 network processor [28] that can more scalably imectly into their allocated nodes or may log in tser-
p|ement Congestion, route f|app|ng, route asymmetry, routéhost , Which serves as a centralized pOint of control. This
queuing delays, and packet dropping policies. Secondly, i¥ode is currently alséileserver , which exports home
plan to incorporate the powerful ModelNet [43] networkand project directories across an experiment and stores op-
emulation platform, which should offer greater scalabilityerating system images.
for wide-area flows. Such integration offers ModelNet’s
benefits, automatically controlled and configured througB.2 Specification
Emulab’s existing interfaces. Just as program text is the concrete specification of a run-
time process, ansscript written in Tcl configures an Emu-
3 E . t Life Cvcl lab experiment. This choice facilitates validation and com-
Xperiment Life Lycle parison sincensspecified topologies and traffic genera-
An experiment is Emulab’s central operational entity. Ition can be seamlessly reproduced in an emulated or wide-
represents a network configuration, including switch VLANarea environment. For the large community of researchers
mappings and path characteristics; node state, includingell-versed inns it provides a graceful transition from
operating system images; and database entries, includisignulation and an opportunity to leverage existing scripts.
event traces and traffic generators to be instantiated &ince Tclis a general-purpose programming language, a re-
nodes. The intended duration of an experiment ranges frosearcher is empowered with looping constructs, condition-
a few minutes to many days. Emulab places a premium ais, and arbitrary functions to drive experiment configura-
efficient experiment creation and termination so that theg@®n and execution.



set ns [new Simulator] ;# Create the simulator

source th_compattcl  # Add Emulab commands target multiple, heterogeneous physical resources simulta-

$ns rtproto Static # Automatic routing neously. For example, a single experiment may incorporate
set source [$ns node] # define new nodes simulated, emulate_d, _and_wide-arealinks.

set gouter [$gs nodg‘] Front-end compilation is performed by a Tdd/parser.

set dest  [$ns node] The parser recognizes the subsehsfelevant to topology

g cOémelct foirfse to rouéer and g’”from dest and traffic generation. Written in Tcl, it operates by over-
ns duplex-link $source $router 10Mb Oms RED o ; f

$ns duplex-link $router $dest 1.5Mb 20ms DropTail riding and interposing on standang procedures. Emulab

executes the script in the context of these new definitions.
As such, the script enjoys the full complement of Tcl's fea-
tures and syntax. Unrecognizedcommands are ignored,
while ns syntax configuring links and traffic sources and
sinks triggers the overloaded procedures.
Figure 2: A linear topology with routing and a wide-area node An Emulab-specific library defines procedures for con-
) ) ) . trolling aspects outside afs domain, including configur-

Emulated nodes and links enjoy full implementation,y 4 node’s operating system and specifying its hardware
transparency. By defaulis syntax used to specify nodes yne These procedures are not required, since Emulab sup-
and links is interpreted by a parser that configures intefjies default values in their absence. A stub library defines
posed Dummynet nodes to effect a virtual topology. To inqy| procedures so that the same script may be executed
stead incorporate distributed nodes, an experimenter neggih on Emulab and withins
only specify a corresponding node type, as shown in Fig- goth gverloaded and Emulab-specific procedures popu-
ure 2. A simulated topology can be embedded within e the database. This relational database stores informa-
phys|ca.l topology by wrapping standarts syntax in a on about hardware, users, and experiments. The database,
make-simulated  block. _ in part functioning like a compiler’s intermediate represen-

Emulab’s automation extends beyond virtual topologyaiion (IR), presents a consistent abstraction of heteroge-
configuration to encompass dynamic aspects of an expefiaoys resources to higher layers of Emulab and to exper-
ment, including traffic generation. Cross traffic is importanfyenters. For example, the front-end database representa-
for studying the behavior of protocols in the face of conges;on of distributed and emulated nodes differ only in a type
tion. Any constant bit rate (CBR) traffic flow identified via tag. The database provides a single name space for all ex-
standardchssyntax automatically instantiates traffic Sourceerimental entities. Thus, in most cases, experimenters can
and sinks using the TG Tool Set [31]. Simulated FTP anflieract with them using the same commands, tools, and
Telnet flows are rendered using emulation facility,nse  haming conventions regardless of their implementation. As
This mechamsm InJ-eCt-S tre_1ff|c _genera_lted by models, sucfy example, nodes of any type may host traffic generators,
as the teplib telnet distribution, into a live network. despite the fact that the traffic may flow over links simulated

Program objects allow arbitrary applications to be alhy ng emulated by Dummynet, or provided by a distributed
tached to amsnode. A program object may be started angggiped.

stopped at any point during an experimental run. Though
outside standards syntax, this mechanism greatly simpli-3.4 Global Resource Allocation

fies remote execution. The global resource allocation phase is responsible for
Experimenters unfamiliar witms syntax may create binding abstractions created during previous stages to phys-
topologies graphically via the “NetBuild” Java GUI. This, jcal entities. It corresponds to the resource allocation per-
in turn, automatically generates asconfigurationfile. Al- - formed during back-end compilation and the name binding
ternatively, a standard topology generator such as GT-ITMone during linking.
or BRITE may be used to generatemsscript that is sub- A simulated annealing algorithrassign , maps a tar-
sequently passed to Emulab. This highlights one of the prgret configuration onto physical resources. The algorithm
mary benefits of integration: application of tools intendedueries the database to obtain the intermediate representa-
for one experimental domain, in this case simulation, to anon of the target configuration as well as the set of available
other. Experiment creation is the only step requiring experodes, switches, and links. On the current hardware base
imenter intervention; all subsequent phases are handled §sign finishes in less than 15 seconds. If the (random-

tb-set-node-os  $source FBSD45-STD ;# Set OS
tb-set-hardware $dest pcinet ;# Request wide-area node

$ns run # "run" on Emulab

Emulab. ized) algorithm fails to find a solution on the first run, it is
_ repeated a number of times. If still unsuccessful, the fail-
3.3 Parsing ure is reported to the user, any residual experimental state

To realize an experimental configuration, Emulab uses ia reaped.

compiler that acceptss as a source language. Portability Based on the output @fssign , Emulab reserves nodes
goals motivate the componentizing of a traditional compileand links and updates the database with the resource map-
into front and back ends. While a traditional compiler onlypings, user-specified node names, delay, bandwidth, and
targets one architecture within a given run, Emulab musbss parameters, and operating system image. To exploit



parallelism, Emulab employs optimistic concurrency mea- Through thermc daemon, a primitive node synchroniza-
sures. Therefore, reservations may fail due to conflictson mechanism is available to user scripts. Each node has
caused by race conditions. If a reservation faalssign an associated “ready” flag in the database. Nodes can de-
is again invoked and the process is repeated until reachiotare themselves ready and retrieve the count of ready nodes
successful allocation or a threshold number of failures.  and the total number of nodes in their experiment.
To ensure consistent naming across instantiations of an
ns configuration, Emulab virtualizes IP address and host.6 Experiment Control
names. This level of indirection is necessary since a corraditional operating systems offer simple job control over
figuration is unlikely to be mapped to the same physicdpcal processes, including an ability to start, stop, and re-
resources upon re-creation. While experimenters are freesgme execution. Distributed operating systems and batch
manually assign IP addresses, this task is most often left @ieue systems extend this mechanism to apply across a net-
Emulab. Despite using a randomized algorithm to assigiork. To provide complete accessibility to remote experi-
actual physical nodes and links, Emulab deterministicallgnenters and zero penalty for remote use, Emulab is faced
names nodes and links across experiment creations. with a similar challenge. Like these systems, and like sim-
ulators, Emulab must control distributed processes such as
3.5 Local Self-Configuration traffic generators running throughout an experiment. To this
Emulab must configure resources after their assignmeend, Emulab employs a distributed event system. Unlike the
to physical hardware. This is driven by the nodes thenabove systems, Emulab must expose hardware resources to
selves, but entirely controlled by state stored centrally in theemote users. Through virtualization, Emulab provides dis-
database. We have found that managinde statés one of tributed access to local resources, such as serial lines, and
the most crucial aspects in meeting our goals. For robusxtends control mechanisms to links.
ness and security reasons we keep the nodes free of persigf virtualization imposed a common, high-level inter-
tent configuration state. At boot time they are in their onlyface to physical resources, Emulab would limit an experi-
fully-known state, and at that time configure themselves ouenter’s power and expressiveness over these entities. Em-
of the database. ulab provides abstractions via tools amglhigh-level syn-
Emulab ensures that a clean disk image is installed dax. However, experiments are not restricted to such in-
every node before experiment swapin or creation; this préerfaces. Such unchecked power allows an experimenter
sented a significant performance challenge. The conflicting unwittingly corrupt their assigned resources. Emulab’s
policy and performance requirements of disk loading arability to restore an experiment’s state from the database
described later, in section 4.2. and reload disk images from a repository protect the exper-
In parallel, cooperative nodes are issued a Waboot imenter from accidents.
command viassh ; any nodes that fail to reboot in a timely Emulab currently supports an event system that allows
manner are power cycled. The PCs’ BIOS are configuragsers and programs to remotely control activity on the
to have their network cards use Intel's PXE [39] bootstrapodes of a testbed. Our control infrastructure uses events
protocol. Each node’s PXE ROM contacteasterhost ,  for activities such as executing programs or scripts, notify-
loading a first level kernel as directed by the database. Thisg device drivers of changes to characteristics of the sim-
first level kernel might be the fast disk image loader outulated network, and tracking important system events (e.qg.,
lined above, a memory based operating system, or typiode or link failures).
cally, a larger second level bootstrap program. This secondOne aspect of control that we have found to be highly
level loader again contacts the database to determine thelued by experimentersis “root” access, or superuser priv-
next step, either booting from an on-disk partition or downdeges. While this does increase the need for high security to
loading an OSKit [21] kernel. This multiphase approactprotect experimenters from each other and protect the world
permits flexible configuration and customization of the O$rom their experiments we have found root access to be crit-
that runs on each node in an experiment. The system tharal. Emulab is one of the only facilities where researchers
waits for the nodes to come back up. If a node does noan reasonably obtain root access on remote nodes.
come alive in a timely manner it is assigned to the system Every node in Emulab is connected to a control net-
pseudo-experiment “down” for later manual examination. work, separate and isolated from the network that is used
The default installations of FreeBSD and Linux havedor experimental traffic. This provides three important
slightly modified initialization sequences that invoke a nodgirtues: more reliable control, cleaner experimental data,
configuration script, called the Testbed Master Contradnd greater security.
Client, TMcc. By communicating with a daemon that All nodes are connected to serial lines for console inter-
fronts the database, it obtains the information required taction and power controllers so that they can be rebooted
configure interfaces, host names, Dummynet delays, useby, experimenters, even if they crash or get “wedged.” Un-
groups, RPM packages, and startup scripts to be run. l&ss their program needs to use a display or mouse, Emulab
NFS-mounts the specified project’s tree and users’ honmaoes not penalize remote experimenters—with only minor
directories fronfileserver . exceptions, remote users have as much control over nodes



as they would with local machines, and in many ways, the{/odes

have more, since our tools provide easy access to these ﬁ Switches
cilities. For example, console lines are virtualized so that a
experimenter need not be logged into the host where the
rial line is attached; all consoles are securely available fro
any Unix machine.

Figure 3: A trivial six-node partitioning problem
3.7 Preemption
Traditional operating systems preempt and schedule pra-rivial example, consider the physical network on the left
cesses for better system throughput and CPU utilizatiom Figure 3. If we wish to emulate the virtual topology
Because Emulab is a shared facility, efficient utilization ishown to its right, then we must pick a physical realization
also a priority. Therefore, it supports the ability to “swapwhich groups A, B, and C together on one switch, and D, E,
out” and later re-instantiate an experiment. The time scalemd F on the other switch; any other configuration will at-
of scheduling quanta and process context switch times etempt to send excess bandwidth across the inter-switch link.
sure that Unix preemption can generally occur without up- We call determining the relationship between these two
setting interactive use. Preemption in Emulab is compliretworks thetestbed mapping problemThis problem is
cated since the larger time scales inherent in experimetnivial in the six-node example, but in the general case, it is
setup and teardown can not occur without noticeable disrupHP-hard (by reduction to the multiway separator problem,
tion to experiments and results. This additional constraimr the minimum-degree graph partitioning problem [22]).
means that Emulab does not enjoy a Unix scheduler’s free- To maximize the utility of the testbed, we should create
dom to arbitrarily preempt processes. Instead, we have dan assignment in interactive time; in the same way that re-
signed a facility to detect idle periods before swapping owgearchers use thessimulator, interactive use of the testbed
an experiment. creates a qualitative difference in the user’s experience, not
Emulab nodes are often under-utilized despite being apist a quantitative one. Interactive use encourages “what if”
signed to experiments. Although commonly due to negliexperiments and rapid adaptation to results, rather than the
gence, users are reluctant to relinquish nodes assigned toséow tedium of a batch-processed system.
idle experiment. Determining idleness in Emulab is diffi- Our testbed mapper, calledsign , searches for an op-
cult; the indicators used in standard clusters are not setimal assignment of virtual nodes to physical nodes. It at-
sitive enough, since an active experiment may be doirtgmpts to minimize the bandwidth used between switches,
nothing sending a single network probe every 5 minutegnd to minimize the total number of switches affected by
Indicators we monitor include activity in the experimentabne user’s virtual network, so as to retain the largest pos-
network, use of pseudo-terminal devices (indicating inteisible degree of usability for other concurrent users of the
action with the node), and CPU load averages. Our idlestbed. Specifyinfeaturesallows users to obtain partic-
detection system gathers data on these three aspects of @e+ processor types, link types, or nodes last used by the
tivity. Eventually we will use this system to drive automaticsame project. We examine the performancagsign in
swapout of idle experiments. Section 5.2.
During “swap out”, Emulab stores the virtual topology,

host names, and general setup of an experiment in thel.2 Mapping Wide-Area Resources
database. “Swap in” reconstitutes this state on physical réhe designer of an experimental topology which includes
sources after invokingssign . Since nodes currently re- distributed nodes may assign specific desired bandwidth
tain neither their disk nor their memory state, an NFS fil@nd latency characteristics between these nodes. When this
system is used for persistence. experiment gets mapped to physical resources, the experi-

menter expects that the resulting physical topology will re-

semble the one requested as closely as possible. However,

4 lIssues unlike the highly configurable connections inside Emulab,

Here we explore a number of issues which were particularilgonnections between distributed nodes traverse the Internet

important in achieving Emulab’s goals. through uncontrolled links. Fortunately, on the Internet,
physical nodes (ideally) offer x (n — 1) links between

4.1 Mapping of Virtual to Physical Resources them—each one with its own, probably unique, characteris-

4.1.1 Mapping Local Resources tics. Because of this, an ideal mapping of experiment nodes

In a testbed of appreciable size and finite inter-node bandnto physical nodes can be reasonably close to experiment
width (i.e., a practical and economical one), we must assigpecifications.

the user’s virtual nodes and links to their physical counter- However, finding this ideal mapping is a far from simple
parts. That is, Emulab ensures the physical hardware withsk. For non-trivial experiments, an exhaustive search is
support the emulated traffic flows without introducing anyut of the question. To provide a best-effort solution in a
bottlenecks, with their attendant experimental artifacts. Ashort amount of time, we implemented a genetic algorithm.



Solutions deemed “fit” for purposes of the genetic algodownloading, uncompressing and writing out the disk im-
rithm had a low (sum of roots) latency error, a low (sum ofige. After completion, the node reboots from the newly
logs of ratios) bandwidth error, and avoided the assignmeimstalled image.

of multiple experiment nodes onto the same physical node. We currently provide a small set of images containing
The experimenter may decide to base the mapping on longarious versions of Linux and FreeBSD, but in the future
term observed physical characteristics of the network, or asill likely provide others, including Windows 2000. Cus-
recently gathered statistics that better reflect the sometimisn disk images can be used to boot an unsupported OS, to
dynamic nature of the Internet. The algorithm completes ittoad a newer (or older) version of a supported OS, or to in-
task of mapping experiments to our current distributed nodsall a specialized version of an existing image on multiple
set in a few seconds at most. Performance of this systemrisdes.

discussed in further detail in Section 5.2. Disk reloads occur on each experiment creation or
_ _ swapin, so performance is a major concern. Although im-
4.2 Disk Reloading age creation is much less frequent than image loading, its

An important feature of testbed control is the ability toperformance is reasonably important. Once Emulab made
reload disks automatically. Disk reloading is the most reit quick and easy for users to save the entire state of their
liable and efficient way to install a new OS image. disks in a few minutes with a few mouse clicks, they be-
Policy: Inthe policy for disk reloading we see a tensioncame much more willing to swap out their experiments.
between the latency of typical experiment creation, oveHowever, since disk loading is far more frequent and is in
all Emulab throughput, Emulab system complexity, nodene critical path of experiment creation and swapin, we have
robustness, and experiments’ security. Our policies ha¥gcused on that.
evolved over time, driven by our tools, pressure on re- The Emulab disk loader, termed “Frisbee” (the flying
sources, and experience. disk) uses three main techniques to improve performance
To ensure a consistent, safe, and secure OS installatigftom Emulab’s initial 29 minutes per image. First, it care-
each node in a new experiment requires that a clean disilly overlaps block decompression and device I/0. Second,
image be loaded, sometime after the previous experimeifituses a domain-specific compression algorithm that can
terminated. However, disk reloading remains one of thgjentify and skip “empty” areas of a disk such as filesys-
most time-consuming aspects of experiment creation aném free blocks and swap partitions, while using standard
swapin, although over time we have reduced it to less thailib -based compression for the remainder. This algorithm
100 seconds. Currently, Emulab’s policy is that upon exexploits the fact that many disks contain large swap parti-
periment termination, each node’s disk is reloaded with thgons and mostly-empty filesystems. For example, one of
default image containing both FreeBSD and Linux. Thigur standard FreeBSD images for a 3GB partition is over
works well since most users request one of these OS'’s, aBd% unused, and reduces to 156MB using Frisbee image
if there are sufficient free nodes, the disks are reloaded gbmpression, versus 473MB using nagléo  compres-
the background, ready to go for the next swapin. sion. In addition to saving network bandwidth when trans-
A troubling effect occurs, however, in the common casgerring the file, the filesystem-specific compression enables
of a single experimenter creating and tearing down verhe Frisbee decompression program to skip, rather than ze-
similar experiments, in quick succession; this frequentlyoing, the unused blocks when writing out the disk im-
also happens with the batch queue. The nodes are not avaidye. This turned out to be very important: once we had
able for the few (typically wasted) minutes while reloadingdone standard compression and implemented a multicast
which is exactly when the user requests a similar numb@fiechanism, DMA to the disk became the bottleneck. For
of nodes for their next experiment. In the past, to avoighe aforementioned disk image, Frisbee would write out
this anomaly we delayed reloading for 100 seconds, rea50MB of actual decompressed data rather than the full
locating the unreloaded node only to an experiment in th@GB. The third optimization technique used by Frisbee is
same project as the previous experiment. However, that h@smulticast the compressed images to clients, dramatically
robustness vulnerabilities. reducing the required server bandwidth and improving scal-
Users can specify an alternative disk image or partitiomapility. The result is that a standard FreeBSD image that
including a user-provided image, holding an arbitrary OSequires 88 seconds to load onto a single node, requires an
In that case, the background disk reloading was entirelyverage of only 97 seconds per node to load on 80 nodes.
wasted. Automated analysis of historical and ongoing ex-
periment creation and swap patterns would be one way th3 Testing
attack this challenge. Emulab presents unusual testing challenges for two reasons:
Process: The procedure for disk reloading follows thei) It is inherently coupled to physical artifacts which, un-
initial steps described in Section 3.5: the PXE BIOS loadbke software state, cannot be cloned. This makes full test
the initial bootstrap which in turn loads a small, memoryand regression runs impossible. ii) Its mission is to pro-
based FreeBSD system used to run the disk loader clienide a public evaluation platform for arbitrary programs.
This client contacts an instance of the disk loader servefhis mission simultaneously puts a premium on accuracy



and precision, while presenting a fundamentally unknow- *+° ‘ ‘ e p——

H Waiting for nodes to finish rebooting ---x---
able workload. Combined, these two reasons also mean that . | " Re;guerggggggrggégg X
Resource mapping -—-®-

Emulab must run continuously, even as its software radi- -
cally evolves.

We have countered with the following procedures. First,
we have created an 8-node version of the Emulab testbed, . |
Minibed. It serves some, but not all, of our testing needs.$
As an independent version of Emulab, Minibed is also key*
in developing federated Emulabs.

200 |

150

Second, we have integrated support for testing through- 1 R

out the Emulab software suite. In addition to the normalop- | I
erating mode, all of our software supports a “test mode” in PR n pgg BT
s

0

which any operations that normally affect hardware are pre- °o 10 0 %@ w0 50 0 70 Py
vented. It allows us to make duplicate installations of Em- Humber o Nodes

ulab databases and software, including web interfaces aFigure 4: Time to create an experiment without disk loading. Stages shown
daemons, and to run tests of the software without requirirﬁzcou,m for 99%.of the total, which is thg top line. The other stages of
exclusive access to hardware. We also have incorporated e ment creation account for the remainder.

“full-test mode,” in which we can reserve hardware in the

master Emulab database, and use that hardware in COnjuggzentially equal to the swapin duration of a swapped-out
tion with the duplicate database and software. One feat“éﬁ’(periment. This equality is due to the insignificant cost of

that makes this possible is database-driven, node-speciﬂgrsing thensinput file and creating our IR, compared to
redirection to alternate daemons and databases. the cost of realizing a topology.

Third, we developed a comprehensive regression test ) ) )
suite that is run nightly, and optionally at compile time. Figure 4 shows the time it takes to create experiments

However, Emulab’s recent jump in complexity is starting thlthoyt disk relogdlng. The most time-consuming stages of
exceed the capability of these point tests. Therefore, we afgPeriment creation are shown on the graph. First, a map-
creating a few end-to-end regression testing programs thifd to physical resources is done by assign -~ program.
exploit Emulab’s automation and programmability to sweeahe”’ those resources are reserved into the experiment, and
through “all” Emulab variables (14 today), currently result-S€UP. such as cleaning console logs, is performed. Nodes
ing in 232 measured values—an incomplete set. The key #§€ rebooted in parallel, in groups of eight, so as not to over-
managing this apparent complexity is to measure only a sift'€SS network resources. Finally, we wait for all nodes to

gle easily-obtained value, such as the end-to-end througf?Me back up before reporting to the experimenter that their

put on a single TCP connection. The experiment is confi@XPeriment is ready. Throughout the process, we use par-
ured so that every value of every parameter will indirecth?/lel Operations as much as possible to reduce setup time.

affect the measured value. We expect these programs, witR" €xa@mple, though it takes non-negligible time, our setup
tuning, to be sensitive regression tests of end-to-end Em@f VLANS for the experiment does not show up as a cause
lab function. of experiment creation time scaling, because it is done in

parallel with the longer step of rebooting nodes.

- The single-node experiment takes 135 seconds, of which
5 EﬁlClgncy _ the majority is spent rebooting the node and waiting for it
In this section we evaluate Emulab’s performance, includp return to multiuser mode. Each additional node adds a

ing detailed analysis of the main challenges to efficiencynarginal cost of approximately 3.4 seconds.
We include comparisons to the measured costs of manu-_ - . . :
ally setting up small experiments, and an analysis of the im- With automatlc_ d'fs'k Ioadmg,.experlment creqﬂon takes
proved resource use provided by Emulab’s time- and spacI nger, as ShOWF‘ infigure 5. Asm_gle n_ode_experlmenttakes
sharing. 51 ;eco_nds vv_|th an average-size disk image. However,
creation time still scales linearly, and the marginal cost for

5.1 Experiment Creation and Swapping adding more nodes is still just 4.8 seconds, on average.

We timed the creation of experiments of various sizes, both When rebooting large numbers of nodes, occasionally
with and without disk loading at experiment creation-timesome fail to come up properly—such is the nature of com-

Most experiments fall in the former category, as our demodity PC hardware. Emulab watches for such occur-

fault dual-OS disk images prove sufficient for most experirences, and through issuing a “ping of death” and perhaps
menters. Loading at experiment creation time is only ne@ power cycle, attempts to bring up nodes that fail to boot
essary when a custom disk image is requested, since Eninitially. As a result, experiment creation occasionally takes

lab reloads each node with the default image as soon it ignger, but experiments rarely fail due to transient hardware
freed from an experiment. Experiment creation duration ifaults.
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Figure 5: Time to create an experiment with disk loading. The amount of Figure 6: Performance and Scalingasfsign
time taken up by the disk loading itself is also shown.

topology for each of a variety of experiment complexities.
5.2 Virtual to Physical Mapping The results of running the solver on each topology show
Mapping of virtual to physical resources must be done effthat as experiment complexities grow, mapping takes sig-
ciently or it could dominate experiment creation time. Wenificantly more time. All experiments with 32 nodes, as
now explore the performance of our two mapping programsyell as all sparse topologies, mapped in a few minutes, but
one for mapping Emulab-local hardware and one for mapnany dense topologies using most of the nodes took three
ping distributed resources. hours or more! Similar to the above, topologies using every
Mapping to Emulab-local Resources:Emulab has kept node mapped relatively quickly, in minutes. These results
detailed logs of every successful experiment since Jursdow that the solver will scale well in the medium-term, but
2001, and in less than a year has accumulated data on oasrthe WAN hardware base grows dramatically, a more opti-
2000 experiments. From this data we have collected pemized algorithm running in parallel on multiple processors
formance information for each experiment. Analysis showsiay be required to provide interactive setup times.
that a reliable indicator of the difficulty of a mapping prob-
lem is the number of virtual nodes (vnodes) the user ré&5.3 Disk Loading
quests. The performance is indicated by the runtimesef = Here we further analyze disk loading performance, one of
sign . We added a general notion of resource equivalentke main costs in experiment creation and swapin. To iso-
classes tassign in December 2001; Figure 6 demon-late the cost of disk loading using Frisbee, we pre-create ex-
strates the resulting improvements. The new version takegriments of increasing sizes and manually reload the disks
less than 13 seconds on even the largest topologies, and lafier the experiment is finished setting up. For each run, all
than 5 seconds for most experiments. nodes start loading their disks simultaneously. As Frisbee
Mapping to Wide-area Resources: We conducted two uses multicast distribution of images, one would expect it
experiments to test the performance of the “WAN solverto scale gracefully, and this is reflected in Figure 8. From
genetic algorithm. The first mapped a wide variety of experl base time of 88 seconds to load a 3GB (180MB com-
imental topologies onto our current set of 16 WAN nodegressed) image on a single node, to an average of 97 sec-
while the second mapped a variety of experimental topol@nds per node for 80 nodes. The anomalous data point for
gies onto a synthetic set of 256 WAN nodes. 60 nodes (104 seconds) is likely due to transient load on the
For the first set of statistics, we chose 48 (node-counitnage server, but needs to be investigated.
link-count) pairs to represent a cross-section of experiment
complexities. For each of these pairs, we ran hundreds bf4 Scaling of Simulated Resources
tests on automatically generated topologies. Figure 7 showge explored the extent to which simulated nodes can be
the average time the solver took to find its final solution fomultiplexed onto physical nodes to increase experiment
each complexity. Interestingly, mappings using all 16 nodescale: it appears that integrating simulated nodes into Emu-
were found much faster than mappings using most, but ntab provides a scaling factor on the order of 100.
all, of the nodes. The results show that for modestly sized We ran an instance ofise simulating many constant
experiments, the solver does not contribute noticeably toit rate UDP flows, between pairs of nodes on links of
the total experiment setup time, nor is it prohibitively slon2Mbps/50ms, running at 2Mbps. To measuasEs abil-
for experiments involving most of the currently availableity to keep pace with real time, and thus with live traffic, a
nodes. 2Mbps/50ms link was instantiated inside the sarsesim-
For the second set of statistics, we generated a physicdation, to forward live TCP traffic between two physical
topology of 256 WAN nodes, as well as an experimentéEmulab nodes, again at a rate of 2Mbps. On an 850 MHz



6000
B 4'nodes —— disk reload

7 Snodes T 120 : ; ; ; . —— :
-y frisbee’ +--x--+

L 12 nodes -
5000 14 nodes
16 nodes

/ e 100 |- |
proomd
4000 |- / 1

80 [ —

somo
'

3000

time(ms)

60 [ q

2000 |-
40 E

Per-node reload time (sec)

1000 w

I I I I I I I I
0 10 20 30 40 50 60 70 80
Number of nodes

. . . .
0 20 40 60 80 100 120 0
edges

Figure 7: Average time for WAN solver to find a final solution for a variety Figure 8: Scaling of “Frisbee” disk loader with increasing number of
of experimental topology complexities (node and edge counts.) nodes.

PC, we were able to scale the number of simulated flonsess. We counted operations comparable to steps one would
up to 105 simulated links and 210 simulated nodes, whil@ake in manual configuration, such as creating or updating
maintaining the full throughput of the live TCP connectionconfiguration files, interacting with the database, and calcu-
Past 105 simulated links, the throughput dropped precipliating the mapping of a topology onto the physical network.
tously. We also measuredés TCP model on the simulated We found 233 separate operations just in this portion of ex-
links: the performance dropped after 90 simulated linkgperiment configuration.
(We have improved the performancerndeby a factor of
two by making some modest changes to its scheduler.) 5.6 Time and Space Sharing

We also did preliminary validation afsevs. real nodes: We analyzed Emulab’s historical logs for the last 12 months
nsereported TCP throughput 3% higher than a physicab derive quantitative estimates of the value of time-sharing

Emulab node. (experiment swapping) and space-sharing. Although the
behavior of both users and Emulab management would
5.5 Comparison to Manual Configuration change without such features, the estimate is still reveal-

After a time, it becomes easy to take Emulab’s ease d@fig. Without Emulab’s ability to time-share its 168 nodes, a

use for granted. To add quantitative estimates to our maitgstbed of 1064 nodes would have been required to provide

anecdotal accounts of Emulab’s value in configuring expeequivalent service. Similarly, without space-sharing, 19.1

iments, we had a student with significant Linux system ad¢ears would be required.

ministration experience create experiments manually. This

process included wiring machines together, installing OS C -

and configuring software. His first (learning) trial was% Validation

a simple two-node setup with an intervening Dummynein this section we present data that helps validate Emulab’s

node. This took 10.4 hours, and the student estimatedlthavior. We start with low-level and point aspects of the

would have taken a full week had not experienced Emulatystem, progressively moving to more comprehensive eval-

staff been present to assist. The second time through bations.

went much faster, but still took nearly two hours. Emulab

can build a comparable setup, including the installation of&.1 Switch Effects

custom disk image, in six minutes. One of Emulab’s fundamental mechanisms is the flexible
He then set up a “dumbell” topology consisting of fourand accurate emulation of a connection between any two

end hosts communicating through two routers, with a sirfocal) nodes. The flexibility is attained by having all nodes

gle traffic generator. This time we assumed the nodes atonnect to a programmable switch and by inserting “WAN

ready had functional OS installations, so we measured sysmulator” nodes between pairs of hosts to achieve desired

tem configuration, routing setup, and traffic generation. Afbandwidth, delay, and packet loss characteristics. In the

ter subtracting the time spent learning the new tasks, he fifellowing two sections we evaluate the accuracy of our em-

ished in 3.25 hours. The equivalent Emulab time is less thanation.

three minutes. To characterize the delay introduced by the Cisco
To give a feeling for the scale involved in automating Emswitches we measured the round-trip time (RTT) of packets

ulab’s type of configuration, we counted the number of opsent between two nodes, first with the nodes directly con-

erations involved in Emulab’s experiment swapin processiected via Cat5 crossover cables, and then with the nodes

approximately 20% of the entire experiment creation prosonnected via a VLAN in the switch.
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packet RTT RTT per-byte packet | expected | observed % 90% confidence
length | direct (us) | switch (us) | overhead length | RTT (ms) | RTT (ms) | error interval
64 63.4 92.1 0.22 5 ms delay
256 102.2 176.7 0.15 64 10 10.036 0.036 10.034 - 10.037
512 143.0 266.7 0.12 1518 10 10.293 2.93 10.261 - 10.325
1024 225.1 445.2 0.11 300 ms delay
1518 297.1 601.3 0.10 64 600 601.271 0.21 601.26 - 601.27
1518 600 602.487 0.41 | 602.485 - 602.488

Table 2: Measurement of packet round-trip time (RTT)
Table 3: Measured accuracy of delay emulation as a function of packet

The two nodes run minimal OSKit kernels. so thafize and link delay. The link bandwidth was unlimited and the link loss

rate was 0.0. The sample size was 10000 for 64 byte packets and 1000 for

scheduling and other overheads found in a full multiz;g,q byte packets.

processing kernel could be eliminated. The first node runs

therequest kernel which serially transmits simple UDP link bandwidth | observed bandwidtd % error | std. dev.
packets and waits for areply. The second node runethe 75 Mbps 74.87 Mbps 0.17 0.028
ply kernel which reverses the MAC and IP addresses and |10 Mbps 9.97 Mbps 030 | 0.004

sends the packets back through the same interfage.  Table 4: Measured accuracy of bandwidth emulation as a function of link
guest records the time at which it transmits and receiveBandwidth. The link delay was Oms and link loss rate was 0.0. Traffic
each packet, producing the resulting round-trip time. consisted of 1518-byte packets at 8Kpps.

Table 2 summarizes the results of the two tests for various

. . . . link loss rate | observed loss rate % error | std. dev.
packet sizes. While in percentage terms the difference is 0.01 0.0101 1 0.002
significant, in absolute terms it is quite reasonable. Cross- 0.5 0.5018 0.36 0.001

mg_the d'ameter of (_)ur switch t0p0_|09y atits longest pomtTable 5: Measured accuracy of packet loss rate emulation as a function of
which entails crossing two trunk links, addg<${10%) t0 |ink loss rate. The link bandwidth was unlimited and the link delay was
the round-trip time for a 64-byte packet. Oms. Traffic consisted of 1518-byte packets at 8Kpps.

Another switch-related concern is thawitch manage-
ment such as setting up VLANS, not affect unrelated expe6.3 Event System
imental traffic. To check this, we sent constant high-speethe Emulab event system consists of four components:
packet streams between nodes, while setting ports up/dowrmaster event server, per-experiment event schedulers, a
and creating/removing VLANs. Those are the frequent omdynamic event generation tool, and various event clients.
erations associated with creation and termination of expefihe event messaging model and master event server are
ments. In all cases, the resulting per-packet mean round-ttigken from Elvin [41], a notification and messaging ser-
time and standard deviation were the same as for contreice. While Elvin supports a flexible, content-addressable
streams which experienced no concurrent switch configuraressaging model, Emulab defines a small set of fixed mes-

tion. sage types, usinglvind to handle event subscriptions
and distribute notifications according to those subscriptions.
6.2 WAN Emulator Node Effects Sinceelvind is only an event dispatcher, we have an

There are two concerns with using off the shelf PC’s and event scheduler to queue events until their trigger time, at
general purpose OS as WAN emulator nodes. One is parhich point they are sent to the event server for immedi-
formance: whether the machine can keep up with the nette delivery to interested parties. The event scheduler starts
work when the emulated links are operated at full speedby extracting static, ns-specified events from the database
The more important issue is how accurate are the emulatbédt it also handles dynamically generated events from the
delays, bandwidths, and packet loss rates. event generation tool. The event generation tool is a simple
As a capacity test, we generated streams of UDP roundemmand-line tool, using a syntax similar to that in the ns
trip traffic between two nodes, with and without an emulatofile, for generating various events at specified times. Cur-
node in between. We found that, for 1518-byte packets, thrent clients of the event system include traffic generators,
emulator node has no adverse effect: either configuratiendelay node control agent and a general remote execution
can easily saturate a 100Mb link. With 64-byte packets, thiacility.
two nodes can exchange 45000 packets (2.9MB) per sec-Since events are scheduled and queued centrally on
ond when connected directly versus 30000 (1.9MB) whemasterhost and distributed at the time of firing, it is im-
joined by an emulator node. Note that these are round triportant that events be delivered in a timely fashion to ensure
measurements, so the packet rates with and without the eavent firing accuracy. For individual node events, we expect
ulator node are really twice the numbers reported above. the latencyof event delivery to be on the order of the one-
We then ran another series of experiments to characteriagy trip time betweemmasterhost and the node. For
the emulator node, by sending traffic at the node’s full caevents that are to occur simultaneously on multiple nodes,
pacity, and measuring how faithfully it emulates link delaythere is an additional issue to consider. Since our Elvin mas-
bandwidth and packet loss rate. Tables 3, 4 and 5 summntaf event server does not currently use multicast for event
rize these experiments. distribution, there will be somskewbetween the first and
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node event stdev clock Live Internet Emulated

delay (ms) offset (ms) tics | stddev | retransmits| tics | stddev | retransmits
pc39 0.637 0.136 0.441 Fast 29 0.00 1.10 28 0.67 1.10
pc24 0.177 0.140 0.677 Slow | 21 0.73 1.70 21 0.52 2.80
pcl6 0.936 0.142 0.316 — — )
pc32 1.124 0.133 0.173 Table 7: Median “tic” rates and packet retransmission counts achieved by
pc27 1.091 0.136 0.249 “DOOM” clients, both on live Internet and emulated links. Numbers are
pc2l 1.225 0.137 0.152 repeated both for nodes with uniformly fast links, and with some slower
pc30 | 1.223 | 0135| 0.217 links mixed in.
pc25 1.016 0.138 0.301
pcgé 1-32; 8-32 %11%1% We evaluated DOOM on four network configurations,
EE% 1300 | 0.140 -o 186 making at least four repeated runs on each. We specified
pc26 1.814 | 0.139| -0.032 the desired latency and bandwidth of the 10 links that cre-
pc28 2207 | 0136 | -0.279 ate a fully-connected graph between all five clients.
pc34| 0403 | 0134| 0.603 For the first configuration, by giving a node type of

Table 6: Event notification delay as measured between event dispatcigevremote in the ns file, we specified that the nodes
and client, averaged over 10 runs. Nodes in the table are listed in the ordgg wide-area (l‘Emote ") and they be virtual nodes \(")

in which the event was dispatched to highlight skew. “Clock offset” is. . .
thentp measured offset between the node’s local clock and the referenJ:‘ee" mU|tIp|exed onto some set of the phyS|caI remote

clock onmasterhost  (the source of the event). (RON) nodes. Emulab’s mapping phase, the genetic algo-
rithm described in Section 4.1.2, found the best-matching
last nodes receiving the event. Internet links from among the wide-area nodes that still

To measure the latency and skew of event delivery, tHead available virtual node “slots.” (If we had preferred
per-experiment event scheduler was modified to record@@arser-grained specification of the wide-area experiment,
timestamp prior to passing an eventetvind for dis- instead of giving link characteristics we could have re-
patch. A special event client was then run on all nodeguested virtual nodes by wide-area (last mile) subtype,
within an experiment. This client received events, extracguch as pcvinet2 ” (Internet2) and pevintl " (inter-
ing the time stamp and comparing it with the local currenpational).)
time. After compensating for clock skew between the node For the second configuration we used the same link spec-
andmasterhost , the result is the delivery latency. An ification, but by changing just one line (inside a Tcl loop)
experiment was created with 15 nodes and an event “broéittat set the node type, we obtained Emulab-local nodes and
cast” to all nodes for their capture. The event was sent I@nulated links. The third and fourth configurations were
times and the per-node times averaged. Table 6 summarizglogous to configurations one and two, but we requested
the results, with one node omitted due to an unacceptaspme substantially slower links, with the goal of demon-
inaccurate clock. As delays are on the order of the resétrating an application-visible effect.
lution of clock synchronization, the results are highly vari- The results were good, as presented in Table 7. The two
able but clearly quite small. A general trend can also bkey metrics in DOOM are “tic rate” and packet retransmis-
seen, with delay increasing by around 2ms between the firsibn. Tic rate in this example is affected primarily by la-
and last nodes notified, demonstrating that there is a modéshcy, and represents the rate at which progress is made

skew. in the system—a higher tic rate indicates faster progress.
Packet retransmission rates are governed by bandwidth and
6.4 Validation Against the Wide-Area packet loss rate; there are typically only a handful of re-

In this section we outline two macrobenchmark comparfansmitted packets per trial.

isons between real Internet nodes and corresponding con-

figurations on Emulab. The first example also demonstrates; At
I . ) ide-Area Database Replication:

Emulab’s flexibility and the transparency of its WAN link P

specification.

Researchers at
Johns Hopkins University are studying group communica-
tion mechanisms for wide-area replication of databases. In
the course of their research they compared results from the
Distributed Multiplayer Game:  Besides validation be- CAIRN wide-area network [12] to their results on local Em-
tween Emulab’s distributed nodes and its local nodes, in thidab hardware, with Emulab links emulating the delay and
experiment we also demonstrated Emulab’s ability to mapandwidth characteristics they observed in CAIRN. As re-
requested WAN links into the best-matching live Interneported in their technical report [5], their application-level
links. We have 5 synthetic clients of the standard multimeasurements of communication characteristics matched
player game “DOOM.” The communication protocol usedvell. Emulab offered them two other advantages over
by this version of DOOM is simple (and stupid). At a targetCAIRN: due to the control offered by Emulab, they were
rate of 30 times per second, each client sends unicast paélasily able to study the effects on their system of varying
ets to all other clients, doing so only once it has received afietwork characteristics. Secondly, they could obtain nodes
the prior period’s packets from its peers. all of the same type, unlike on CAIRN. In summary, after
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obtaining baseline data from the Internet, Emulab’s control ‘ ‘ ‘
and repeatability let them better study the effect of network B
characteristics on their system.

7 Case Studies and Experience

7.1 TCP Dynamics

Network simulators, such ass, have proven invaluable in
studying TCP behavioral dynamics [19]. Because of ab-
stractions such as lack of a CPU utilization model and one- _ _ _
way protocols with simplified window and ACK behavior, Figure 11: Comparison of Simulated, Emulated, and Analytic TCP Perfor-

. . . .. . mance
simulation should be validated empirically. Ironically, the

potential for bugs and unspecified design parameters MmegRys may well uncover additional bugs. Such subtle bugs
that real implementations do not necessarily define valid b@\iould be exceeding difficult to detect and reproduce with-
havior, either. Nevertheless, the notion of “deviant behavdut Emulab’s fine-grained control.  Our initial work in
ior” [16] allows us to simultaneously gain confidence in the, 1o mating TCP regression testing has also led to the dis-
validity of simulation and the correctness of implementaf:Overy of a discrepancy between the New Reno Fast Re-

tion. L i ) transmit [27] implementation in FreeBSD 4.5 and the cor-
Thensmaintainers run nightly regression tests [32]. Em'responding RFC [18].

U|a.bf transpa;entdagblllty tz {)arSlI;dscgtsh means theste Figure 10 depicts another scenario from tisgest suite
SCMpLS can instead be used 1o valldasbenavior against ., drops three packets during New Reno Slow Start.

efmullfltlon.l _Furlther, Ti.teStS may dnve_ regression test"}%gain,nsreacts gracefully to the losses, retransmitting each
of a kernel impleémentation or a Comparison across severgr, timely fashion. The last loss under FreeBSD 4.5 in-

implementations. This section presents preliminary resulbﬁJces a retransmission only after a timeout. This TCP
that show the feasibility of automating this process. Thﬁnplementation confounds thesénd _high ” and “re-

S‘”d}/ of low-level, fine-grained TCP dynamics shows Emz e » yariaples discussed in the New Reno Fast Recov-
ulab’s flexibility in modulating a virtual network at various

ery RFC [18], using instead a singlsrid _recover "vari-
scales.

able. This results in overly eager invocation of the False

Th'$ approach IS a ge_neral anq pawerful means of tesquast Retransmit algorithm [27], which suppresses Fast Re-
or validating the dynamic behavior of network protocols A% ansmission

realized in kernels or within simulation. Our framework
executes a test script withivsand parses output trace files .
to determine Wherepto generate F:raf'fic, WhiF():h packets a|7e2 TCP Latency Modeling

dropped, and which links suffer losses. It then configure8nalytic TCP models [37, 13] tend to be both heavily pa-
a network topology via Emulab’s event system and passégmeterized and heavily dependent on network assump-
a list of target drop packets to the correct Dummynet nod&ons, including independent packet loss, specific queue dis-
Again via the event system, the framework starts a progragiplines, and zero scheduling or buffering overhead. The
object to record packet traces and finally invokes the traffigormer feature often motivates parameter-space exploration
generators. through simulation, while the latter calls for validation on

Figure 9 shows a simple test from thevalidation suite real hardware. These two goals are generally at odds with
that drops a single packet in a TCP New Reno stream. Tig@e another, forcing an experimenter to make concessions
nsand FreeBSD 4.5 senders detect a Triple Duplicate ACko one or the other. By leveraging Emulab’s automation and
and perform a Fast Retransmit immediately. By contrasgontrol, we were able to explore a parameter space consist-
we discovered that FreeBSD 4.3 does not retransmit uiirg of 50 iterations each of 23 loss rates. After experiment
til triggered by a timer expiration, which greatly degradesreation, the results were collected without experimenter in-
throughput. tervention.

This example highlights the potential of automating com- These results are plotted alongside their analytic and sim-
parison of simulation and emulation. The apparent visuailated counterparts in Figure 11. In all cases, 1MB is trans-
similarity of the graphs is supported by statistics. FreeBSBerred across a link with a 50ms delay. Data points for sim-
4.5 achieves a mean bandwidth of 50232.4 Bps over 10 eilation and emulation represent averages of 50 iterations
periments, with a standard deviation of 4.08.achieved a and are plotted with 90% confidence intervals.
mean throughput of 48090 Bps. Simulation and the analytic model exhibit average errors

Secondly, this example shows the merit of automated ref 7% and 19% respective to emulation. The discrepancy
gression testing applied to large, evolving software systemisetweenns and the analytic model is consistent with the
The behavior in FreeBSD 4.3 is caused by an uninitializefindings of Cardwell et al. The simplicity of emulating a
variable. A thorough application of the full suite of TCPlarge range of parameters allows an experimenter to gauge

Frequency of
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an analytic model’s sensitivity to its assumptions. For exresearch. The remainder is split between Active Networks
ample, we could easily study the model’s applicability taesearch, instructional use for classes, and use of Emulab
RED queues, which are inconsistent with the model's ags a computational cluster. Clearly, Emulab is success-

sumption of drop-tail behavior. ful as a tool, and has wide appeal among several areas in
the field. The wide variety of projects using Emulab illus-
7.3 The Armada I/O Framework trate how its features are important for these projects. For

This example from others’ research demonstrates the valirstance, educational users of Emulab (primarily OS and
that Emulab’sautomationbrings to experimental evalu- networking classes at remote universities) have enjoyed the
ation; it is further described in a technical report [36]isolation and protection we offer, which makes Emulab one
Automation enables easy exploration of large parametef the only places where they can safely give their under-
spaces, as one can do in simulation. graduate students root access. Network researchers, on the
Dartmouth’s Armada[35] system is designed to improvether hand, find Emulab’s ability to set up arbitrary network
I/0 in computational grids. The results it obtains depentbpology to be vital.
highly on the bandwidth, latency, and packet loss rate of the
wide area network connecting the nodes or LANs involved7 5 The
They ran experiments that tested every possible combina-
tion of 7 bandwidths, 5 latencies, and 3 application paranEmulab is in a unique position to characterize the needs of
eter settings on four different configurations of the Armadaetwork and distributed systems experiments. We have a
system on a set of 20 nodes, performing a total of 420 diffesample of over 2000 experiments, presumably representa-
ent tests in 30 hours, averaging 4.3 minutes each. Becaus of large classes of research in these areas. From this
Emulab supports such high levels of automation, this wasample we've extracted information that will be useful in

“Average” Experiment

all done inside one experiment. recognizing the experimenters’ requirements. For exam-
_ ple, the most frequent experiment size was two nodes, even
7.4 The “Average” Project/User though many more nodes are typically available. We at-

Emulab currently has 201 users in 58 different projectdribute this to development and debugging work in prepa-
with a few users belonging to more than one project. 4ation for larger scale experimentation. The distribution of
of those projects have been active enough to configure oegperiment sizes is multi-modal, with another mode at 15—
or more experiments. Excluding our own Emulab devel20 nodes, and smaller modes near 30 and 40 nodes. We be-
opment work, the most active project has created over 40i@ve that another significant mode would be at much larger
experiments, and three others have created more than 166ales, such as those typical of peer-to-peer overlay net-
Three of our most consistent users have each had 8-drks, in in the hundreds or thousands of nodes. We are
nodes in almost constant use for 6-8 months at a time. currently analyzing our logs to determine the distribution

Almost half of the projects using Emulab are working orof numbers of links—which is confounded by the high in-
distributed systems research, and about 40% on networkinglence of LANs that experimenters specify.
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7.6 Non-IP Protocols by Michigan'’s “Orchestra” fault-injection system [15]. Al-

Ideally, Emulab’s local nodes should be usable by expef?ough there have been exceptions, typically these single
iments involving protocols that are not IP-based, and thé_\ode emulators were tailored for a specific research applica-
was one of our original goals. However, there are twdion, were (or are) no_t well supported or widely distributed,
known issues that limit the ability to do this. First, node2nd have not been widely adopted by external users.
names are virtualized at the IP level: IP addresses within The “Access” project [7] originated the vision of a dis-
an experiment remain constant across swapins. The iddebuted set of testbeds. They explored the feasibility of
solution would be to virtualize at the link layer, but that re-building a set of small testbeds, distributed over many sites
quires additional interaction and synchronization with th@round the world. The Access vision overlapped with Emu-
Emulab switch fabric. An easier solution is to abstract Emkab in our shared emphasis on completely replaceable node
ulab’s notion of an address and continue to virtualize abowgoftware, our operational model of a Web-accessible mas-
the link layer. The second problem is that the standarr control host, and provision of power control and serial
tools used within Emulab are primarily, if not exclusively,console lines. However, we differ in many other respects.
IP-based. This includes the OSes, Linux and FreeBS[Bundamentally, Access did not intend to provide an emula-
routing agents, DNS, DHCP, Dummynet, and the tunnelingjon facility, did not have our emphasis on ease of use, nor
code. Some may be easily extended to work with arbitrargid it intend to offer integration. They did recognize a need
protocols, but in general, providing complete replacementge identified only later, for real wide-area links for some
would be a significant task. experimenters.

Network simulators successfully isolate protocol dynam-
ics but may do so at the expense of accuracy. Therefore,
8 Related Efforts results from simulators such as[42] and GloMoSim [1]
Emulab uses well-known experimental infrastructure a&!@y not be valid indicators of deployed performance [20].
building blocks, particularlyns [42], the nse emulation Brakmo and Peterson [10] highlight differences between
facility [17], Dummynet [40], and the RON wide-area Simulated and implemented TCP protocols. They present
testbed [6]. Emulab’s novelty is its ability to integrate thes&-Sim, a simulator which avoides inaccuracies by embed-
techniques in a manner that provides ease of use, contr8ind actual protocol code. However, this approach requires
and realism. For example, whilsseprovides the mecha- the non-standarg-kernel.
nism that allows simulated traffic generators to affect real Heidemann et al. describe means of gaining confidence
links, establishing such a scenario without Emulab requirés network simuation [25]. The integration of simulation
manual configuration. within a live experimental environment provides another

ModelNet [43] is a large-scale network emulation facil-validation opportunity. This idea leverages the simultane-
ity that utilizes a gigabit cluster serving as a router core tous integration of simulated nodes with physical nodes to
deliver packets to edge nodes. ModelNet most closely aprovide greater scale through simulation tempered by the
proaches Emulab’s automatic configuration of physical reealism of emulated or wide-area nodes. Physical nodes
sources by distilling a target topology specified in any numare integrated with simulation to detect possible inaccura-
ber of high-level formats. However, as ModelNet focusesies. For example, if simulation is sufficiently accurate for a
on scalability, it does not extend this automation to consigiven application, simulated and emulated nodes should ex-
tent control over heterogeneous physical and simulated ribit similar behavior under careful scrutiny. Secondly, this
sources. Like other emulation mechanisms, including tradeybrid approach should be largely indistinguishable from
modulation [34] and NIST Net [33], ModelNet is a compli- pure simulation.
mentary approach that can be deployed in place of or along-Emulab’s design and the problems encountered along the
side Dummynet. way have relevance outside the domain of network experi-

Trace modulation [34] recreates observed end-to-endentation. In particular, Emulab offers a unique perspec-
characteristics of a wireless network. Interposing tractive on cluster management. Most existing systems, in-
modulation instead of Dummynet would provide supportiuding GLUnix [23], PBS [26], Condor [30], LSF [46],
for wireless links in Emulab. and Ganglia [14] mask a multitude of physical nodes be-

Over the past decade there have been a large numberhirid the illusion of a single virtual interface. This virtu-
additional network emulation efforts. These include hitalization is provided bysoftware- often in user-level li-
box [3], the Ohio Network Emulator (ONE) [4], and Rice’s braries. Emulab instead virtualizésrdware This dis-
support for evaluating their web-oriented kernel and OS oginction has important consequences. For example, because
timizations [38, 8]. One of the earliest and largest uses aff their relatively high level of interposition, these systems
emulation was a twelve node deployment at USC in 1994enerally can not checkpoint processes that fork or perform
used to study TCP Vegas [3]. They cite an emulator efC. An as yet unimplemented design of checkpointing un-
fort at Bell Labs [29], which apparently started to buildder Emulab seamlessly copes with forked process and IPC
a more general emulator. Another category is representbdcause it captures and recreates a node’s entire hardware
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