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Abstract—The NetFPGA platform enables students and re-
searchers to build high-performance networking systems using
field-programmable gate array (FPGA) hardware. A new version
of the NetFPGA platform has been developed and is available
for use by the academic community. The NetFPGA platform has
modular interfaces that enable development of complex hardware
designs by integration of simple building blocks. FPGA logic
is used to implement the core data processing functions while
software running on an attached host computer or embedded
cores within the device implement control functions. Reference
designs and component libraries have been developed for the
CS344 course at Stanford University, Stanford, CA, and taught at
a series of tutorials held in the United States, United Kingdom,
India, China, Australia, and Europe. The open-source Verilog, C,
Perl, and Java reference design is available for download from the
project website.

Index Terms—Field-programmable gate arrays (FPGAs), In-
ternet, networks, protocols, routing, switches.

I. INTRODUCTION

H IGH performance network switches and routers en-
abled the rapid growth of the Internet. Gigabit Ethernet

switches are widely deployed to interconnect computers in
local area networks (LANs). Multigigabit/second links are used
to transport Internet protocol (IP) packets across wide area
networks (WANs). At most universities, students only learn
to build networking systems with software. The students that
do take a hands-on course in computer networking typically
write software programs that send and receive packets through
user-space sockets. Students who take advanced courses write
software for the kernel that interfaces directly with a Linux
operating system. While systems implemented with software
may be able to send and receive some of the packets to and
from a gigabit/second Ethernet line card, software alone is
not suitable for switching, routing, and processing most of the
traffic that appears on high-speed networks.
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Fig. 1. Photograph of a NetFPGA installed in a Desktop PC.

C commercial vendors of high-speed networking equipment
use application specific integrated circuits (ASICs) and/or
field-programmable gate arrays (FPGAs) to accelerate the
switching, routing, and processing of packet data. To be com-
petitive, students need to understand how these hardware-accel-
erated systems operate. Using the NetFPGA platform, students
can build and prototype their own hardware-accelerated net-
working systems and run live traffic through the hardware.
Using the NetFPGA, traffic on four gigabit Ethernet links can
be processed at the full gigabit/second rate. By processing data
with hardware, back-to-back packets can be scanned at gigabit
rates [1], [2].

For teachers of hardware or networking classes, a set of
reusable infrastructure and courseware has been developed.
By starting with this infrastructure, students need not build
systems from scratch. Gateware and software provided with
the NetFPGA enables the platform to receive and transmit
packets, buffer data in memory, and communicate with the host
processor. A reference router enables the NetFPGA to operate
as a full line-rate Internet router. The courseware, consisting
of Web pages, homework assignments, machine problems, and
presentation slides, provides instructors with the resources to
teach students how to build an Ethernet switch and an Internet
router.

The NetFPGA platform fits into a standard desktop or rack-
mount computer. The hardware augments a PC with an expan-
sion card that has four ports of gigabit Ethernet attached to the
peripheral communication interconnect (PCI) bus. The FPGA
on the platform directly handles all data-path switching, routing,
and processing of Ethernet and Internet packets, leaving soft-
ware to handle only control-path functions. A photograph of a
PC with the NetFPGA installed is shown in Fig. 1.

II. THE NETFPGA PLATFORM

A photograph of the NetFPGA (version 2.1) platform is
shown in Fig. 2. At the center of the NetFPGA platform
is a large Xilinx FPGA device. Surrounding the FPGA are
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Fig. 2. Photograph of the NetFPGA platform.

Fig. 3. Block diagram of the NetFPGA.

four memory devices—two static RAMs (SRAMs) and two
second-generation double date rate (DDR2) SDRAM devices.
On the left side of the platform, a quad-port physical-layer
transceiver (PHY) is provided that enables the platform to send
and receive packets over four standard twisted-pair Ethernet
cables. On the right side of the board, two serial advanced
technology attachment (SATA) connectors on the platform
allow multiple NetFPGAs within a system to exchange data at
high speeds without using the PCI bus.

A. Components of NetFPGA

A detailed block diagram that shows the major components
of the NetFPGA platform is shown in Fig. 3. The NetFPGA
2.1 platform contains one large Xilinx VirtexII-Pro 50 FPGA,
which is programmed with user-defined logic. The core clock
on this device can be configured by the user to run at either 125
or 62.5 MHz. The NetFPGA platform also contains one small
Xilinx Spartan II FPGA that implements the control logic for
the PCI interface to the host processor.

Two external Cypress SRAMs are arranged in a configuration
of 512 k words by 36 b (18 Mb/4.5 MB total) and operate syn-
chronously with the FPGA core logic at either 62.5 or 125 MHz.
One bank of external Micron DDR2 SDRAM is arranged in a
configuration of 16 M words by 32 b (64 MB total). Using both
edges of a separate 200 MHz clock, the memory has a band-
width of 400 MWords/s ( ).

The Broadcom quad-port gigabit PHY sends packets over
standard category 5, 5e, or 6 twisted-pair cables. The PHY

interfaces with four gigabit Ethernet media access controllers
(MACs) instantiated as soft cores within the FPGA. The
NetFPGA also includes two multigigabit interfaces with SATA
connectors that enable multiple NetFPGA boards in a system
to exchange traffic directly without use of the PCI bus.

B. Computer-Aided Design Tool Flow

A number of computer-aided design (CAD) tools are re-
quired to simulate and implement designs for the NetFPGA.
Designs are simulated using Mentor Graphics ModelSim to
verify correct logical operation. Verilog source code is syn-
thesized using either Xilinx ISE or Synplicity’s Symplify Pro.
Logic is mapped, placed, and routed using Xilinx ISE backend
tools. Finally the resultant bitfile is programmed into the FPGA
using a command-line program that runs on the host PC. De-
bugging of hardware circuits can be performed via the JTAG
port using Synplicity Identify or Xilinx ChipScope on-chip
logic analyzers.

C. Interface to Software

A Linux kernel device driver allows user space software on
the host PC to send packets and receive packets via the Ethernet
ports on the NetFPGA board. The driver also allows application
programs to read or write the memory-mapped registers that
correspond to a design’s on-chip registers, SRAM, and DRAM.
In total, 128 MBytes of host memory address space is reserved
for each NetFPGA board installed in a host computer.

The NetFPGA device driver is a loadable kernel module
(LKM) that should be compatible with any Linux 2.6 kernel.
Loadable kernel modules allow drivers to be installed in the
kernel without requiring a full kernel recompilation. The driver
provides four network interfaces, named nf2c0 to nf2c3, to user
space.

User-space programs send and receive network packets to
the NetFPGA via the Linux networking stack using a standard
socket interface. Programs initiate communication with the
NetFPGA using standard and functions and
then use the or functions to open a channel
of communication with the NetFPGA. Programs then use
standard functions such as , , , and
to send and receive data to/from the NetFPGA.

Direct memory access (DMA) is used to transfer complete
Ethernet frames between the host and NetFPGA—these DMA
transfers are initiated by the driver but performed by logic in
the NetFPGA. This allows the host to perform concurrent oper-
ations while the I/O is in progress.

User-space programs can perform memory-mapped reads
and writes via I/O control commands ( ). An com-
mand performs a single word transfer to or from the NetFPGA.
These calls provide a convenient method to access registers and
memory on the board.

D. Availability of Hardware

NetFPGAs are available to the community directly from a
third-party vendor who manufactures the hardware. This com-
pany, Digilent, Inc., has a long history of making low-cost eval-
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Fig. 4. Sample topology of a network with five NetFPGA routers.

uation boards through their partnerships with the Xilinx univer-
sity program (XUP).

III. STANFORD’S CS344 ROUTER DESIGN COURSE

The CS344 course at Stanford University, Stanford, CA,
is a graduate-level, project-based course that teaches Ph.D.,
Master’s, and advanced undergraduate students how to build
an Internet router in just eight weeks [3]. Students who take
the class learn how to develop both the hardware and software
components for a high-speed router. Each team consists of one
student to work on hardware and one or two students to write
router control software.

Using the NetFPGA, student teams build a fully functional,
gigabit/second Ethernet switch and router. Together, teams in-
terconnect multiple NetFPGA platforms in a network that routes
packets over several gigabit Ethernet links. The topology of one
such network implemented with five NetFPGA routers is shown
in Fig. 4. Forwarding tables are implemented in hardware, and
use values populated by the routing software to forward packets
along the shortest path between machines.

A. Student Background

Students undertaking the hardware design task are expected
to enter the class with basic hardware design experience. The
assumption is made that these students already understand the
basic concepts of synchronous logic and hardware pipelining.
Most computer engineering students entering CS344 have al-
ready coded at least a small project using Verilog.

Students undertaking the software design task are expected to
have taken a networking class. They are assumed to have already
been exposed to the concepts of network stacks and socket pro-
gramming. Students should also be proficient in programming
in C.

Hardware students are also encouraged to have taken a net-
working course prior to enrolling in this course, so as to have a
basic understanding of addressing and routing. Students without
this background are expected to do background reading during
the first few weeks of the course.

B. Course Structure

This course is conducted as a quarter-long (10 weeks) course
at Stanford University. Students taking the course typically
take two other classes during the quarter, or are working on a
part-time research project. Students are expected to allocate

10–20 hours per week to complete the class assignments. The
course is structured with periodic assignments that have regular
deliverables. A short lecture is given before each assignment
to describe the objectives and milestones. Teams meet with the
teaching staff on a weekly basis. The teaching staff provides
guidance to each team, and monitors progress to ensure that
students do not fall behind on the assignments.

At the start of the course, students are provided with the
NetFPGA hardware platform, Verilog HDL code that imple-
ments an Ethernet repeater, and skeleton software code that
provides a framework for implementing the router’s control
path. The hardware and software members of each team work
independently during the early stages of the course except for
meetings where they discuss the interfaces between hardware
and software.

In the first assignment, the hardware members of each team
extend the design of the given two-port Ethernet repeater to im-
plement a four-port learning Ethernet switch. This assignment
provides the hardware students with an opportunity to famil-
iarize themselves with the CAD tools, the NetFPGA platform,
and the format of fields within an Ethernet packet.

In the next assignment, hardware students replace the
switching logic with routing logic that forwards packets
using the IP address in the header. The students compare the
destination IP address in the packet to entries stored in the soft-
ware-generated routing table to find a longest matching prefix.
According to which of the entries matches, they then look up
the next-hop using the address resolution protocol (ARP) and
update the destination address field in the Ethernet header.

While some team members build hardware, the rest write
software to implement the control path. Students use the vir-
tual network system (VNS) in order to test control programs in-
dependently of the hardware [4]. The control path software in-
cludes a routing algorithm based upon OSPF, a command-line
interface, and the logic to route packets in software (necessary
when the hardware forwards packets to software, such as in the
case of an ARP table miss). Also included in the implementa-
tion is support for ARP and ICMP protocols.

At the midpoint of the course, the hardware and software
members integrate their designs. The hardware and software
members test their designs together to ensure that the hardware
and software components properly communicate. Teams test the
interoperability of their routers with one another by intercon-
necting their routers and verifying that pee wee open shortest
path first (PW-OSPF) properly exchanges routes between the
machines.

In the final few weeks of the course, student groups each im-
plement an advanced feature for their router. Students choose
their project and discuss their plans with the instructor. Exam-
ples of features implemented by students during the spring 2007
quarter include a network address translation (NAT) module, a
multicast router, access control lists (ACLs), and DES encryp-
tion.

C. Hardware Design

A core feature of the NetFPGA platform is a modular design
that is easy to understand and modify. The class and reference
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Fig. 5. NetFPGA’s router data path.

material encourage students to carry that modularity through to
their resultant designs.

The starter code is structured around the following set of com-
ponents: the user data path, the Ethernet I/O blocks (encapsu-
lating the MAC and clock domain crossing logic), and the host
interface logic (enabling communication and packet transfer be-
tween the host and NetFPGA). Students add logic to perform
routing or switching to the user data path.

The user data path is implemented as a pipeline, using
multiple modules. An arbiter reads packets from the Ethernet
or from the host interface then feeds them through the pipeline.
Because packets are multiplexed together, no crossbar is
needed within the data path. Data is demultiplexed as packets
are written to output queues. Peak bandwidth through the user
data path is 8 Gb/s in the FPGA fabric. A block diagram of the
data path is shown in Fig. 5.

The main components implemented by the students within
the user data path were the input arbiter and an output port
lookup module. The output port lookup module was built as a set
of multiple submodules that holds the ARP and routing tables,
performs longest prefix match (LPM) on the routing table, per-
forms next-hop lookups on the ARP table, verifies the IP header,
and updates the necessary fields in the packet. The output queues
and the modules, except for the user data path, were provided to
the students as part of the starter code.

D. Hardware Testing

Students first test their designs in simulation. The NetFPGA
test environment uses Perl scripts to instruct the simulator to in-
ject packets into the PHY, perform DMA transfers, read packets
from the PHY, monitor a DMA transfer, and read/write regis-
ters through the PCI interface. Cycle-accurate simulation allows
basic design errors to be identified and corrected prior to syn-
thesis. Once the hardware design appeared to be functional, stu-
dents synthesized their circuits using the Xilinx ISE CAD tools
and downloaded the resulting bitfile into the Virtex FPGA on
the NetPGA. Simulation worked well for testing small volumes
of traffic, but was found to be far too slow for testing large vol-
umes of traffic.

Students were given access to PCs that allowed them to test
their designs in real hardware at full gigabit line rates. Each

PC had both a NetFPGA card and a quad-port gigabit network
interface controller (NIC) installed. Initially, each port of the
NIC was connected to a port on the NetFPGA. Students ran
utilities such as ping, traceroute, iperf, and Wireshark to inject
and monitor real traffic to and from the NetFPGA.

At a larger volume of traffic, students found problems with
their hardware that they had not observed in simulation. These
problems were generally caused by corner cases not covered in
simulation. To debug the hardware, signals on the FPGA were
analyzed using Xilinx Chipscope, an on-chip logic analyzer.
Chipscope allowed the students to monitor and capture the se-
quence of events that caused a packet to be dropped or corrupted.

Later in the course, students interconnected different ma-
chines to created network topologies with multiple routers. In
these networks, students performed experiments to ensure that
multihop routes were created correctly. The students unplugged
Ethernet ports to verify that the routers responded properly
to link failures and were able to reroute packets along the
next-best path. Multiple groups tested their routers together to
verify that the routers were interoperable.

E. Student Feedback

Students were asked to provide informal feedback at the con-
clusion of the class. Common feedback received indicated that
the class was interesting, personally satisfying and quite chal-
lenging. Students also indicated that the workload was relatively
high. One student wrote that “Overall it was awesome. I came
in without knowing much about networks or routers, and I left
with a wealth of information. It must sound weird but I truly
liked everything since I have never seen this stuff in such detail
beforehand.”

Another student wrote: “It was one of the most satisfying,
interesting, and time consuming courses I’ve taken at Stanford.”

The two most common issues reported by the hardware stu-
dents were: 1) problems meeting timing and 2) problems identi-
fying elusive bugs. The resource requirements of the starter code
were reduced for the 2008 version of the class, making it easier
for the place and routing tools to meet timing requirements. The
timing issues can also be significantly eased by targeting to the
62.5 MHz clock. Additional steps have also been undertaken to
further simplify the process of writing simulation tests to aid in
identifying more bugs before testing in hardware.

IV. NETFPGA INFRASTRUCTURE

The NetFPGA is an open platform that can be used at other
universities to teach courses like CS344. The components that
implement the functionality to switch and route packets can be
reused to teach courses like CS344 at other institutions.

Most NetFPGA designs include both hardware components
and software components. For example, with the four-port
router, all of the forwarding functions are implemented as
hardware components using gateware developed in Verilog,
while the software components that implement and control the
PW-OSPF is written in C, C++, and Java.

Multiple circuits have been developed for the NetFPGA
that include: a four-port network interface card, a four-port
learning Ethernet switch, and a four-port IP Version 4 (IPv4)
router. The router not only forwards packets, but also negotiates
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routes using a simplified version of the OSPF protocol called
PW-OSPF.

NetFPGA infrastructure was designed to be capable of han-
dling packets at gigabit/second line rates. The modules pro-
vide a high degree of visibility into the operation of the device
through use of memory-mapped registers that can be accessed
by the CPU on the host. These registers are used to configure
the mode of the hardware, set the sizes of buffers, and monitor
the progress of packets through the pipeline.

A. The Reference Router Gateware

The reference hardware design gateware consists of a mod-
ular pipeline with multiple components. Components are mod-
ular and can be reused in other projects that build upon the func-
tion of the base router. By starting with a working reference
design, the barrier to entry for implementing complex network
designs is lowered for students and researchers, who are mainly
interested in adding a feature rather than rebuilding a complete
network system from scratch. The modular design allows the
components to be easily shared, thus facilitating the develop-
ment of a community-supported project.

B. Student Design Projects

Once the students completed assignments to implement the
Ethernet switch and Internet router, they were given the oppor-
tunity to implement their own advanced feature that built upon
the reference router during the last two weeks of the course. The
NetFPGA allows packets to be created, modified, or dropped.
Packets can be sent to and from the Ethernet ports and the host
processor. Packets can also be forwarded between any of the
four physical ports on the platform.

During the spring 2007 quarter of CS344, four advanced fea-
tures from the 2007 class were NAT, time synchronization, mul-
ticast and packet capture. All four features were implemented
within a two-week period.

The first team implemented NAT to allow multiple hosts to
share a single IP address. The NAT device translated packet
headers between a publicly-accessible IP address and a private
address space for hosts behind the NAT device. The team added
an extra lookup to identify the IP address/port translation to
apply. Packets without a match in the hardware table were
forwarded to software for further processing. Frequently-used
translations were stored in a small table in hardware, while a
much larger table of infrequently-used translations was stored
in software.

The second team implemented a simplification of the IEEE
1588 protocol. This protocol provides a mechanism for preci-
sion time synchronization, on the order of tens of nanoseconds,
of devices over Ethernet. Implementation required deterministic
time stamping of packets at arrival/departure. No elastic buffers
could be used between the wire and the point of time stamping.
The team successfully demonstrated synchronization between
multiple routers by showing submicrosecond time synchroniza-
tion.

The third team implemented a multicast circuit that allowed
a single packet to be copied to multiple destinations using hard-

Fig. 6. Photo from the CS344 final presentations in spring 2007.

ware. The team processed join and leave messages to add and
remove the host from a multicast group table in hardware.

The fourth team built a circuit to capture packets transiting
through the router and forward those packets to the host. The
implementation compiled Berkeley packet filters (BPF) into a
form suitable for the hardware. The hardware contained a set of
circuits that matched parts of a packet simultaneously.

C. Presentation of Results of Advance Features

A photo of the CS344 final project presentations, which took
place on June 5, 2007, is shown in Fig. 6. Students presented
their projects to the class and to a panel of judges from industry,
who were invited to evaluate the results of the student projects.

V. RELATED WORK

Other platforms have been used to implement some of the
functionality that is provided by the NetFPGA platform. Similar
to the NetFPGA, the RiceNIC utilized a VirtexII-Pro FPGA to
implement the function of a network interface card [5]. Modules
on the field-programmable port extender (FPX) platform have
also been used in the classroom to implement Internet routing
functions [6], [7].

Several research projects have used the NetFPGA platform
to implement customized packet switches with advanced
features. With Ethane, the NetFPGA was used to provide
fine-grained control on how packets were switched in a
LAN [8]. The NetFPGA has also been integrated into the
DETER testbed where it was used to implement intrusion
prevention functions [9].
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