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Abstract
We revisit the problem of scaling software routers, motivated
by recent advances in server technology that enable high-
speed parallel processing—a feature router workloads ap-
pear ideally suited to exploit. We propose a software router
architecture that parallelizes router functionality both across
multiple servers and across multiple cores within a single
server. By carefully exploiting parallelism at every opportu-
nity, we demonstrate a 35Gbps parallel router prototype; this
router capacity can be linearly scaled through the use of ad-
ditional servers. Our prototype router is fully programmable
using the familiar Click/Linux environment and is built en-
tirely from off-the-shelf, general-purpose server hardware.

1 Introduction
To date, the development of network equipment—switches,
routers, various middleboxes—has focused primarily on
achieving high performance for relatively limited forms of
packet processing. However, as networks have taken on in-
creasingly sophisticated functionality (e.g., data loss protec-
tion, application acceleration, intrusion detection), and as
major ISPs compete in offering new services (e.g., video,
mobility support services), there has been a renewed in-
terest in network equipment that is programmable and ex-
tensible. In the absence of such extensibility, network
providers have typically incorporated new functionality by
deploying special-purpose network “appliances” or middle-
boxes [1,8,13–15]. However, as the cost of deploying, pow-
ering, and managing this assortment of boxes grows, the vi-
sion of a consolidated solution in the form of an extensible
packet-processing “router” has grown more attractive. And
indeed, both industry and research have recently taken steps
to enable such extensibility [9, 17, 18, 40, 41].

The difficulty is that the necessary extensions often in-
volve modification to the per-packet processing on a router’s
high-speed data plane. This is true, for example, of appli-
cation acceleration [13], measurement and logging [8], en-
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cryption [1], filtering and intrusion detection [14], as well
as a variety of more forward-looking research proposals
[21, 36, 39]. In current networking equipment, however,
high performance and programmability are often competing
goals—if not mutually exclusive. On the one hand, high-end
routers, because they rely on specialized and closed hard-
ware and software, are notoriously difficult to extend, pro-
gram, or otherwise experiment with. On the other, “software
routers” perform packet-processing in software running on
general-purpose platforms; these are easily programmable,
but have so far been suitable only for low-packet-rate envi-
ronments [16].

The challenge of building network infrastructure that is
programmable and capable of high performance can be ap-
proached from one of two extreme starting points. One
might start with existing high-end, specialized devices and
retro-fit programmability into them [17, 18, 40, 41]. For
example, some router vendors have announced plans to
support limited APIs that will allow third-party develop-
ers to change/extend the software part of their products
(which does not typically involve core packet process-
ing) [17, 18]. A larger degree of programmability is pos-
sible with network-processor chips, which offer a “semi-
specialized” option, i.e., implement only the most expen-
sive packet-processing operations in specialized hardware
and run the rest on conventional processors. While cer-
tainly an improvement, in practice, network processors have
proven hard to program: in the best case, the programmer
needs to learn a new programming paradigm; in the worst,
she must be aware of (and program to avoid) low-level issues
like resource contention during parallel execution or expen-
sive memory accesses [27, 32].

From the opposite end of the spectrum, one might start
with software routers and optimize their packet-processing
performance. The allure of this approach is that it would
allow a broad community of developers to build and pro-
gram networks using the operating systems and hardware
platforms they tend to be most familiar with—that of the
general-purpose computer. Such networks also promise
greater extensibility: data and control plane functionality
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can be modified through a software-only upgrade, and router
developers are spared the burden of hardware design and
development. In addition, leveraging commodity servers
would allow networks to inherit the many desirable prop-
erties of the PC-based ecosystem, such as the economic
benefits of large-volume manufacturing, a widespread sup-
ply/support chain, rapid advances in semiconductor tech-
nology, state-of-the-art power management features, and so
forth. In other words, if feasible, this could enable networks
that are built and programmed in much the same way as end-
systems are today. The challenge, of course, lies in scaling
this approach to high-speed networks.

There exist interesting design points between these two
ends of the spectrum. It is perhaps too early to know which
approach to programmable routers is superior. In fact, it is
likely that each one offers different tradeoffs between pro-
grammability and traditional router properties (performance,
form factor, power consumption), and these tradeoffs will
cause each to be adopted where appropriate. As yet how-
ever, there has been little research exposing what tradeoffs
are achievable. As a first step, in this paper, we focus on one
extreme end of the design spectrum and explore the feasi-
bility of building high-speed routers using only PC server-
based hardware and software.

There are multiple challenges in building a high-speed
router out of PCs: one of them is performance; equally im-
portant are power and space consumption, as well as choos-
ing the right programming model (what primitives should
be exposed to the router’s software developers, such that
a certain level of performance is guaranteed as in a tradi-
tional hardware router). In this paper, we focus on perfor-
mance; specifically, we study the feasibility of scaling soft-
ware routers to the performance level of their specialized
hardware counterparts. A legitimate question at this point
is whether the performance requirements for network equip-
ment are just too high and our exploration is a fool’s er-
rand. The bar is indeed high. In terms of individual link/port
speeds, 10Gbps is already widespread; in terms of aggre-
gate switching speeds, carrier-grade routers [5] range from
10Gbps up to 92Tbps! Software routers, in comparison,
have had trouble scaling beyond the 1–5Gbps range [16].

Our strategy to closing this divide is RouteBricks, a router
architecture that parallelizes router functionality across mul-
tiple servers and across multiple cores within a single server.
Parallelization across servers allows us to incrementally
scale our router capacity by adding more servers. Paralleliz-
ing tasks within a server allows us to reap the performance
benefits offered by the trend towards greater parallelism in
server hardware in the form of multiple sockets, cores, mem-
ory controllers, and so forth. We present RouteBricks’ de-
sign and implementation, and evaluate its performance with
respect to three packet-processing applications: packet for-
warding, traditional IP routing, and IPsec encryption. We
designed RouteBricks with an ambitious goal in mind—to
match the performance of high-end routers with 10s or 100s

Figure 1: High-level view of a traditional router and a
server cluster-based router.

of 1Gbps or 10Gbps ports. The results we present lead us
to be cautiously optimistic about meeting this goal. We find
that RouteBricks approaches our target performance levels
for realistic traffic workloads, but falls short for worst-case
workloads. We discover why this is the case and show that,
fortunately, what is required to overcome this limitation is
well aligned with current server technology trends.

We continue with a discussion of our guiding design prin-
ciples and roadmap for the remainder of this paper.

2 Design Principles
Our ultimate goal is to make networks easier to program
and evolve, and this leads us to explore a router architecture
based on commodity, general-purpose hardware and operat-
ing systems. In this section, we summarize the design prin-
ciples that emerged from translating this high-level goal into
a practical system design.

Parallelism across servers. We want to design a router
with N ports, each port with full-duplex line rate R bps.
The role of the router is to receive the packets arriving at
all these ports, process them, and transfer each incoming
packet from its input port to the desired output port (which is
typically determined by processing the packet’s IP headers).
This router’s functionality can thus be broken into two main
tasks: (1) packet processing, like route lookup or classifica-
tion, and (2) packet switching from input to output ports. In
current hardware routers, packet processing typically hap-
pens at the linecard, which handles from one to a few ports,
while packet switching happens through a switch fabric and
centralized scheduler; as a result, each linecard must pro-
cess packets at a rate proportional to the line rate R, while
the fabric/scheduler must switch packets at rate NR (i.e., it
must handle the aggregate traffic that traverses the router).
Existing software routers, on the other hand, follow a “sin-
gle server as router” approach; as a result, the server/router
must perform switching and packet processing at rate NR.

In many environments, N and R can be fairly high. The
most common values of R today are 1, 2.5 and 10Gbps, with
40Gbps being deployed by some ISPs; N can range from ten
up to a few thousand ports. As specific examples: a popular
mid-range “edge” router supports up to 360 1Gbps ports [3];
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the highest-end “core” router supports up to 4608 10Gbps
ports [5]. For such N and R, getting a general-purpose
server to process and switch packets at rate NR is an un-
realistic goal: such performance is 2–3 orders of magnitude
away from current server performance and, even with recent
server advances, we cannot hope to close so large a gap.

Recognizing this leads to our first design principle: that
router functionality be parallelized across multiple servers,
such that the requirements on each individual server can be
met with existing or, at least, upcoming server models. This
in turn leads us to a cluster router architecture (depicted
in Fig. 1), where each server plays the role of a traditional
router linecard, i.e., performs packet processing for one up
to a few router ports; as with a linecard, this requires that
each server can process packets at a rate proportional to R.
The problem then is how to switch packets between servers.
We look for an appropriate decentralized solution within the
literature on parallel interconnects [28]. In §3, we show that
our use of commodity server and link technology narrows
our options to solutions based on load-balanced intercon-
nects, in which each node can independently make packet
routing and dropping decisions for a subset of the router’s
overall traffic.

Thus, we design a router with no centralized
components—in fact, no component need operate at a
rate greater than cR, where c is independent of N and
ranges typically from 2 to 3. By parallelizing both packet
processing and switching across multiple servers, we thus
offer an approach to building a router with N ports and line
rate R bps, using servers whose performance need only
scale with cR, independently of N .

Parallelizing router functionality across multiple servers
also leads to an architecture that, unlike current network
equipment, is incrementally extensible in terms of ports: For
practical port counts (up to 2048 ports—shown in §3.3), we
show that we can increase the number of ports by n (and
switching capacity by nR) at a cost that scales linearly with
n, simply by adding servers to the cluster. In this sense, a
cluster of general-purpose servers is extensible, not only in
terms of router functionality, but also in terms of capacity.

Parallelism within servers. Our cluster router architec-
ture is only feasible if single-server performance can scale
with cR. With 10Gbps ports and our lowest c = 2, this
requires that a server scale to at least 20Gbps. While a
less daunting target than NR, even this rate at first appears
beyond the capabilities of commodity servers—recent stud-
ies [23,30] report rates under 10Gbps, in the 1–4Gbps range
for minimum-size packets. This leads us to our second de-
sign principle: that router functionality be parallelized not
only across servers, but also across multiple processing paths
within each server. In §5 we show that, although non-trivial,
scaling to cR is within reach, provided: (1) the hardware
architecture of the server offers internal parallelism that ex-
tends beyond processing power to I/O and memory accesses,
and (2) the server’s software architecture fully exploits this

hardware parallelism. In §4.2, we discuss how such paral-
lelism may be exploited.

Resulting tradeoff. The downside to our two key design
decisions—using general-purpose servers and parallelizing
router functionality—is that they make it difficult for our
router to offer the strict performance guarantees that hard-
ware routers have traditionally offered. In particular, packet
reordering (considered undesirable due to its potential im-
pact on TCP throughput) and latency are two fronts on which
a software router may fundamentally have to offer more “re-
laxed” performance guarantees. We discuss performance in
greater detail throughout this paper, but note here that the
historical emphasis on strict performance guarantees, even
for worst-case traffic workloads, arose more because of ven-
dors’ traditional benchmarking practices than the realism of
these workloads or criticality of these performance guaran-
tees. Considering this, and the fact that “relaxed” perfor-
mance guarantees open the door to more general-purpose
network infrastructure, we deemed this a tradeoff worth ex-
ploring.

In the remainder of this paper, we present the design and
implementation of a parallel software router that embodies
these principles: we describe how we parallelize router func-
tionality across multiple servers in §3; how we design to ex-
ploit the parallelism within a server in §4; and finally evalu-
ate our designs in §5-6.

3 Parallelizing Across Servers
In a cluster router, each server takes on packet processing
for one or a few ports and also participates in cluster-wide
distributed switching. The challenge in coping with packet
processing is largely one of extracting the required perfor-
mance from each server—our focus in §4. Here, we focus
on designing a distributed switching solution that is compat-
ible with our use of commodity servers.

3.1 The Problem
A switching solution serves two high-level purposes: (1) it
provides a physical path connecting input and output ports
and (2) it determines, at each point in time, which input
gets to relay packets to which output port and, consequently,
which packets are dropped. This must be achieved in a man-
ner that offers the following guarantees: (1) 100% through-
put (i.e., all output ports can run at full line rate R bps, if
the input traffic demands it), (2) fairness (i.e., each input
port gets its fair share of the capacity of any output port),
and (3) avoids reordering packets. Hence, a switching so-
lution involves selecting an interconnect topology with ade-
quate capacity and a routing algorithm that selects the path
each packet takes from its input to output port. In this,
commodity servers limit our choices by introducing the fol-
lowing constraints:
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1. Limited internal link rates: The “internal” links that in-
terconnect nodes within the cluster (Fig. 1) cannot run
at a rate higher than the external line rate R. This is
because we want to use commodity hardware, includ-
ing network interface cards (NICs) and link technology.
E.g., requiring an internal link of 100Gbps to support an
external line rate of 10Gbps would be expensive, even
if feasible.

2. Limited per-node processing rate: As motivated ear-
lier, we assume that a single server can run at a rate no
higher than cR for a small constant c > 1. We estimate
feasible c values for today’s servers in §5.

3. Limited per-node fanout: The number of physical con-
nections from each server to other nodes should be a
small value, independent of the number of servers. This
is because we use commodity servers, which have a
limited number of NIC slots. E.g., today, a typical
server can accommodate 4–6 NICs, where each NIC
fits 2–8 ports.

We now look for an appropriate topology/routing combi-
nation within the literature on parallel interconnects [28]. An
appropriate solution is one that offers the guarantees men-
tioned above, meets our constraints, and is low-cost. In the
interconnect literature, cost typically refers to the capacity
of the interconnect (i.e., # links × link rate); in our case, the
dominant cost is the number of servers in the cluster, hence,
we look for a solution that minimizes this quantity.

3.2 Routing Algorithms

Design options. The literature broadly classifies inter-
connect routing algorithms as either single-path or load-
balanced [28]. With the former, traffic between a given
input and output port follows a single path. With static
single-path routing, this path remains constant over time,
independently of traffic demands. Such routing is sim-
ple and avoids reordering, but, to achieve 100% through-
put, it requires that internal links run at high “speedups”
relative to the external line rate R; speedups violate our
first constraint, hence, we eliminate this option. The alter-
native is adaptive single-path routing, in which a central-
ized scheduler (re)computes routes based on current traf-
fic demands—for instance, centralized scheduling of rear-
rangeably non-blocking Clos topologies.1 Such centralized
scheduling avoids high link speedups (as the scheduler has
global knowledge and can pick routes that best utilize the
interconnect capacity), but requires that the scheduler run
at rate NR (it must read the state of all ports to arrive at
a scheduling decision); this violates our second constraint,
hence, we also eliminate this option.

1Recent work on data-center networks uses distributed scheduling over
a rearrangeably non-blocking Clos topology, however, it does not guarantee
100% throughput [20].

Figure 2: An 8-port Valiant load-balanced mesh.

We are thus left with load-balanced routing, where traffic
between a given input and output port is spread across mul-
tiple paths. We start with a classic load-balancing routing
algorithm—Valiant load balancing (VLB) [47]—and adapt
it to our needs.

Background: VLB and Direct VLB. VLB assumes a set
of nodes interconnected in a full mesh. Routing happens in
two phases: consider a packet that enters at input node S
and must exit at output node D; instead of going directly
from S to D, the packet is first sent from S to a randomly
chosen intermediate node (phase 1), then from that node to
D (phase 2). In this way, a sequence of packets that enter
at node S and exit at node D is first load-balanced from S
across all nodes, then “re-assembled” at D. Fig. 2 shows an
8-node VLB mesh with each physical node playing the role
of source, intermediary, and destination.

This routing algorithm has two desirable effects. Intu-
itively, phase-1 randomizes the original input traffic such
that the traffic an individual node receives at the end of phase
1 (i.e., the input traffic to phase 2) is a uniform sample of the
overall input traffic at phase 1. As a result, when a node
handles phase-2 traffic, it can make purely local scheduling
decisions about which packets to drop and which to forward
to each output port. This allows VLB to guarantee 100%
throughput and fairness without any centralized scheduling.
Second, VLB does not require high link speedups, because
it forces traffic to be uniformly split across the cluster’s in-
ternal links: in a full-mesh VLB cluster of N nodes with a
per-port rate of R, each internal link must have capacity 2R

N ,
which easily meets our constraint on internal link speeds.

These benefits come at the cost of forwarding packets
twice. Without VLB, a server in a cluster-based router would
be expected to handle 2R of traffic—R coming in from the
server’s external line (to be sent to the other servers) plus R
arriving from the other servers to be sent out on the server’s
external line. With VLB, each node (as an intermediate) re-
ceives an additional R of incoming traffic and hence is re-
quired to process traffic at rate 3R. Hence, the “tax” due
to using VLB is a 50% increase in the required per-server
processing rate.
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“Direct VLB” [49] reduces VLB overhead by leveraging
the following observation: Phase 1 in VLB serves to ran-
domize traffic across the cluster; however, when the clus-
ter’s traffic matrix is already close to uniform (as is often
the case), this first phase can be mostly avoided. More
specifically, in “adaptive load-balancing with local informa-
tion” [49], each input node S routes up to R

N of the incoming
traffic addressed to output node D directly to D and load-
balances the rest across the remaining nodes. The authors
show that this extension maintains the throughput and fair-
ness guarantees of the original VLB. With this extension,
when the cluster’s traffic matrix is close to uniform, each
server processes traffic at maximum rate 2R, i.e., VLB in-
troduces no processing overhead.

So, VLB requires that each server process traffic at rate
cR, where c is between 2 and 3, depending on the properties
of the traffic matrix. We deem this as satisfying our second
constraint (on server processing rates) and evaluate the ex-
tent to which today’s servers can meet such processing rates
in §5.

Our solution. Following the above reasoning, we start with
Direct VLB, which allows us to guarantee 100% through-
put and fairness, while meeting our constraints on link
speeds and per-server processing rates. Two issues remain.
First, like any load-balancing algorithm, VLB can introduce
packet reordering. We address this with an algorithm that
mostly avoids, but is not guaranteed to completely elimi-
nate reordering; we describe it in §6, where we present our
router prototype. The second issue is that our third constraint
(on server fanout) prevents us from using a full-mesh topol-
ogy when N exceeds a server’s fanout. We address this by
extending VLB to constant-degree topologies as described
next.

3.3 Topologies

Design options. When each server handles a single router
port, the lowest-cost topology is one with N servers as
achieved by the full-mesh VLB. However, the full mesh
becomes infeasible when N grows beyond the number of
ports a server can accommodate (recall our constraint on per-
server fanout).

One potential solution is to introduce intermediate nodes:
rather than connect our N servers directly, connect them
through extra nodes that form a low-degree multihop net-
work. In this way, each server (both the N servers that han-
dle the router ports and the extra, intermediate servers) only
needs to run at rate 3R and can have low (even constant)
fanout. Of course, this solution comes at the cost of an in-
crease in cluster size.

Most multihop interconnect topologies fall under either
the butterfly or the torus families [28]. We experimented
with both and chose the k-ary n-fly (a generalized butterfly
topology that interconnects N nodes with n = logk N stages
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Figure 3: The number of servers required to build an
N -port, R=10Gbps/port router, for four different server
configurations.

of k-degree nodes), because it yields smaller clusters for the
practical range of parameters N and k that we considered
(Fig. 3).

If servers can run at speeds greater than 3R, then we can
also exploit the tradeoff between per-node fanout and pro-
cessing rate: If the per-server processing rate is 3sR (s > 1),
then each server can handle s router ports of rate R, hence,
we need only N

s input/output servers instead of N . In this
case, building a full mesh requires a per-server fanout of
N
s − 1 and internal link rates of 2sR

N . Intuitively, if servers
are more powerful, then we need fewer of them and fewer
(but faster) links to interconnect them.

Our solution. We select a topology in the following way:
First, we assign to each server as many router ports as it can
handle (given its processing capacity and the port rate R).
Next, we check whether the per-server fanout accommodates
directly interconnecting the resulting number of servers in a
full mesh. If not, we use a k-ary n-fly (n = logk N ) topol-
ogy, where k is the per-server fanout (as determined by the
number of NIC slots and router ports per server).

We now look at the cost of our solution for three realistic
scenarios: We consider a line rate of R = 10Gbps. We
assume that each NIC accommodates 2 10Gbps or 8 1Gbps
ports (the latter is currently available in compact form-factor
cards). We consider three configurations:

1. Current servers: Each server can handle one router port
and accommodate 5 NICs.

2. More NICs: Each server can handle one router port and
accommodate 20 NICs. Such servers are available to-
day as a custom motherboard configuration (i.e., requir-
ing no component redesign), typically for data-centers.

3. Faster servers with more NICs: Each server can handle
two router ports and accommodate 20 NICs. This con-
figuration corresponds to expected upcoming servers
(§5).
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For each scenario, Fig. 3 plots the total number of cluster
servers, N ′, required to handle N external ports, as a func-
tion of N . Ignoring, for the moment, the results labeled “48-
port switches,” we see that, with the “current server” config-
uration, a full mesh is feasible for a maximum of N = 32
external ports; the “more NICs” configuration extends this
to N = 128 ports, and the “faster servers” configuration to
N = 2048 ports. We conclude that our cluster architec-
ture can scale to hundreds, potentially even a few thousand
ports. We note that, in theory, our design can always scale
to an arbitrary number of external ports by using extra in-
termediate servers. However, in practice, there will always
be an upper limit determined by the increase in cluster size
that leads to higher per-port cost and power consumption,
as well as higher per-packet latency. The results in Fig. 3
represent a range of port counts for which we believe these
overheads to be reasonable. For example, even with current
servers, we need 2 intermediate servers per port to provide
N = 1024 external ports (a 10Tbps router). Assuming each
server introduces 24µsec of latency (§6.2), such a configu-
ration would correspond to 96µsec of per-packet latency.

Switched cluster: a rejected design option. Fig. 3 also
shows the cost of an alternative, “switched” cluster that we
considered early on. In this architecture, packet processing
is performed by general-purpose servers, whereas switching
is delegated to commodity Ethernet switches: for a low N ,
servers are interconnected by a single switch; when N ex-
ceeds the port count of a single switch, servers are intercon-
nected through a network of switches, arranged in a strictly
non-blocking constant-degree Clos topology [11].

We ultimately rejected this option for two reasons. First,
guaranteeing switching performance using a network of
switches requires support for new load-sensitive routing fea-
tures in switches; such modification is beyond our reach
and, even if adopted by switch vendors, would be signifi-
cantly more complex than the simple load-agnostic routing
switches currently support. Second, a back-of-the-envelope
calculation reveals that, considering current products, the
switched cluster would be more expensive: We considered
a 48-port 10Gbps/port Arista 7148S switch, which, at $500
per port, is the least expensive strictly non-blocking 10Gbps
switch we are aware of. Assuming $2000 per server, 4 Arista
ports correspond to 1 server. Using this “conversion rate,”
we computed the number of servers whose aggregate cost
is equal to an Arista-based switched cluster, and plotted this
number as a function of the number of external ports N .

Fig. 3 shows the result, which indicates that the Arista-
based switched cluster is more expensive than the server-
based clusters. For small numbers of ports where we can
interconnect servers in a full mesh, the server-based cluster
is lower cost, because it avoids the cost of the switch alto-
gether while using the same number of servers. For higher
port counts, the difference in cost is due to the significant
level of over-provisioning that a non-blocking interconnect
must provide to accommodate non-uniform traffic matrices;

our RouteBricks architecture avoids this through the use of
VLB. The penalty, of course, is that the latter requires a per-
server processing rate of 3R, whereas a switched-cluster ar-
chitecture requires a per-server processing rate of 2R.

Summary. We select a router architecture that parallelizes
both packet processing and switching over a VLB intercon-
nect built from general-purpose servers. Our architecture
relies on two key assumptions. First, that a modern server
can handle at least one router port of rate R. Specifically,
since we are using Direct VLB, to handle one port, a server
must process packets at a minimum rate of 2R (assuming a
uniform traffic matrix) or 3R (assuming a worst-case traffic
matrix). For a line rate of R = 10Gbps, these requirements
become 20Gbps and 30Gbps, respectively. The second (and
related) assumption is that a practical server-based VLB im-
plementation can live up to its theoretical promise. Specifi-
cally, VLB’s requirement for a per-server processing rate of
2R–3R is derived assuming that all VLB phases impose the
same burden on the servers; in reality, certain forms of pro-
cessing will be more expensive—e.g., IP route lookups vs.
load-balancing. Thus, we need to understand whether/how
VLB’s analytically derived requirement deviates from what
a practical implementation achieves.

The following sections test these assumptions: in §4 and
§5 we evaluate the packet-processing capability of a state-of-
the-art server; in §6, we present and evaluate RB4, a 4-node
prototype of our architecture.

4 Parallelizing Within Servers
According to the last section, assuming a line rate of R =
10Gbps, our architecture is feasible only if each server can
meet a minimum performance target of 20Gbps. This is
more than twice the rates reported by past studies. Yet re-
cent advances in server hardware technology promise sig-
nificant speedup for applications that are amenable to paral-
lelization; to leverage these advances, router software must
exploit hardware resources to their fullest. Thus, in this sec-
tion, we look for the right approach to parallelizing packet
processing within a server. We start with an overview of
our server architecture (§4.1), then discuss how we exploit
server parallelism (§4.2).

4.1 Server Architecture

Hardware. For our study, we chose an early prototype
of the Intel Nehalem server [19], because it implements the
most recent advances in server architecture, while conform-
ing to the informal notion of a “commodity” server (it is tar-
geted to replace the currently deployed generation of Xeon
servers). Fig. 4 shows this architecture at a high level: There
are multiple processing cores,2 arranged in “sockets”; all

2We use the terms “CPU,” “core,” and “processor” interchangeably.
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Figure 4: A server architecture based on point-to-point
inter-socket links and integrated memory controllers.

cores in a socket share the same L3 cache. Each socket has
an integrated memory controller, connected to a portion of
the overall memory space via a memory bus (hence, this is a
non-uniform memory access—NUMA—architecture). The
sockets are connected to each other and to the I/O hub via
dedicated high-speed point-to-point links. Finally, the I/O
hub is connected to the NICs via a set of PCIe buses. Our
server has two sockets, each with four 2.8GHz cores and an
8MB L3 cache, and two PCIe1.1 x8 slots, which we pop-
ulated with two NICs, each holding two 10Gbps ports [6].
This server is the dual-socket configuration of the single-
socket Corei7 server, and future configurations are expected
to incorporate both more sockets (Fig. 4) and more cores per
socket, as well as 4–8 PCIe2.0 slots.

Software. Our server runs Linux 2.6.19 with Click [38]
in polling mode—i.e., the CPUs poll for incoming packets
rather than being interrupted. We started with the Linux 10G
Ethernet driver, which we extended as described in §4.2. We
instrumented our server with a proprietary performance tool
similar to Intel VTune [7].

Traffic generation. We equipped our server with two dual-
port 10Gbps NICs, hence, a total of four 10Gbps ports.
However, we are only able to drive each NIC at 12.3Gbps:
each pair of ports on the same NIC share the same x8
PCIe1.1 slot; according to the PCIe1.1 standard, the max-
imum payload data rate enabled by 8 lanes is 12.8Gbps—
slightly above what we actually observe [44]. Hence, the
maximum input traffic we can subject our server to is
24.6Gbps. Note that the small number of available NIC
slots is an unfortunate consequence of our using a prototype
server—as mentioned above, the product server is expected
to offer 4–8 slots.

4.2 Exploiting Parallelism
We now summarize the key methods we selected to exploit
server parallelism. We illustrate our points with “toy” exper-
iments, for which we use 64B packets and a simple packet-
processing scenario where packets are blindly forwarded be-
tween pre-determined input and output ports with no header
processing or routing lookups.

Figure 5: A traditional shared-bus architecture.

Multi-core alone is not enough. We first tried building our
cluster out of the widely used “shared bus” Xeon servers.
Fig. 5 shows a high-level view of this architecture. We see
that this earlier server architecture differs from Fig. 4 in two
major aspects. First, all communication between the sockets,
memory, and I/O devices is routed over the shared front-side
bus and “chipset”; in Fig. 4, this communication happens
over a mesh of dedicated point-to-point links. Second, the
older shared-bus architecture uses a single external memory
controller; in Fig. 4, this has been replaced with multiple
memory controllers, each integrated within a socket, thus of-
fering a dramatic increase in aggregate memory bandwidth.

The shared-bus Xeon server we used had multiple cores—
it had eight 2.4GHz cores, similar to our Nehalem prototype.
Yet, for small and even medium-sized packets, its perfor-
mance fell short of the Nehalem’s performance—and well
short of our 20Gbps target. In an earlier study [29], we
found that the bottleneck was at the shared bus connect-
ing the CPUs to the memory subsystem: Packet process-
ing workloads—as streaming workloads, in general—place
a heavy load on memory and I/O, and shared-bus architec-
tures do not provide sufficient bandwidth between the CPUs
and these subsystems. Increasing the number of cores does
not help—their computational resources are left unexploited,
because the cores cannot access the packets fast enough.
These results led us to adopt the more recent Nehalem ar-
chitecture, where parallelism at the CPUs is coupled with
parallelism in memory access; this change leads to higher
aggregate and per-CPU memory bandwidth, as well as bet-
ter scaling—no single bus sees its load grow with the aggre-
gate of memory transactions. As we shall see, this improved
architecture alone offers a 2–3x performance improvement.

Multi-queue NICs are essential. A packet-processing
workload involves moving lots of packets from input to out-
put ports. The question is how should we distribute this
workload among the available cores for best effect. We illus-
trate our approach with the toy scenarios shown in Fig. 6, in
which we construct simple forwarding paths (FPs) between
pairs of interfaces and cores.

When the receive or transmit queue of a network port
is accessed by multiple cores, each core must lock the
queue before accessing it—a forbiddingly expensive opera-
tion when the port sees millions of packets per second. This
leads to our first rule: that each network queue be accessed
by a single core. We can easily enforce this in Click by as-
sociating the polling of each input port and the writing to
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each output port to a separate thread, and statically assign-
ing threads to cores.

The next question is, how should the processing of a
packet be shared among cores? One possibility is the
“pipeline” approach, where the packet is handled by mul-
tiple cores in a row—one core reads the packet from its re-
ceive queue, then passes it to another core for further pro-
cessing and so on (scenario-(a) in Fig. 6). The alternative
is the “parallel” approach, where the packet is read from its
receive queue, processed, and written to its transmit queue,
all by the same core (scenario-(b) in Fig. 6). For pipelining,
we consider both cases where two cores do and don’t share
the same L3 cache, as this allows us to highlight the per-
formance impact due to the basic overhead of synchronizing
cores to transfer the packet from that due to additional cache
misses. Comparing the forwarding rates for each case, we
see that the parallel approach outperforms the pipelined one
in all cases. The overhead just from synchronization across
cores can lower performance by as much as 29% (from 1.7 to
1.2Gbps); with additional cache misses, performance drops
by 64% (from 1.7 to 0.6Gbps). This leads to our second rule:
that each packet be handled by a single core.

Hence, we want that each queue and each packet be han-
dled by a single core. The problem is that there are two (very
common) cases where it is hard to simultaneously enforce
both rules. The first case arises when there are many cores
and few ports, and a single core cannot by itself handle the
processing demands of a port. For instance, consider a 16-
core server handling two 10Gbps ports. A single core cannot
handle 10Gbps of traffic and hence we’d like to “split” the
packet stream across multiple cores. But if a port is tied to a
single core, then each packet is necessarily touched by mul-
tiple cores (the core that polls in and splits the traffic, and the
core that actually processes the packet); this is illustrated in
scenario-(c), Fig.6. The second case is when we have “over-
lapping” paths in which multiple input ports must send traf-
fic to the same output port—scenario-(e) in Fig.6 (compare
to scenario-(b)). Overlapping paths arise in all realistic traf-
fic matrices and, once again, tying each port to a single core
unavoidably results in multiple cores touching each packet.

Fortunately, both cases can be addressed by exploiting a
feature now available in most modern NICs: multiple re-
ceive and transmit queues. Multi-queue NICs are used to
support virtualization; it turns out that, when coupled with
careful scheduling, they also offer a simple, practical solu-
tion to our problem [12]. We should note that Bolla and
Bruschi also evaluate this approach, albeit in the context of a
shared-bus architecture and NICs with multiple 1Gbps inter-
faces [24]. To leverage multiple NIC queues, we developed
a lock-free device driver for 10Gbps multi-queue NICs and
extended Click with multi-queue support. Our Click exten-
sion allows us to bind polling and sending elements to a par-
ticular queue (as opposed to a particular port); this, in turn,
allows us to associate each queue to a thread, then statically
assign threads to cores in a way that enforces both our rules.

Figure 6: Forwarding rates with and without multiple
queues.

In Fig. 6, scenarios-(d) and (f) illustrate how using mul-
tiple queues addresses the problematic scenarios in (c) and
(e), respectively. In both setups, multi-queue NICs allow
us to respect both our “one core per packet” and “one core
per interface” rules. We see that the performance impact
of leveraging multiple queues is dramatic: e.g., scenario-
(d) achieves more than three times higher forwarding rate
than scenario-(c); in the case of overlapping paths, we see
that, with multiple queues, overlapping paths see forward-
ing rates similar to those of non-overlapping paths (approx-
imately 1.7Gbps/FP) compared to a performance drop of al-
most 60% without (0.7Gbps vs. 1.7Gbps/FP).

The next question is whether we always have enough
queues to follow this strategy; if a server with m cores has
m receive and m transmit queues per port, then the answer
is yes. The explanation is straightforward: if each core has
its own dedicated receive (transmit) queue at each port, then
it can read (write) from any input (output) port without shar-
ing queues or packets with other cores. Multi-queue NICs
with 32–64 RX and TX queues already exist, so our solu-
tion is feasible today [6]. Moreover, since multiple queues
are needed for virtualization, and the number of virtual ma-
chines run on a single server is expected to increase with
the number of per-server cores, we expect NIC vendors to
continue to produce multi-queue NICs where the number of
queues follows the number of per-server cores. Hence, un-
less stated otherwise, from here on we use multi-queue NICs
as described above.
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Polling configuration Rate (Gbps)
No batching (kp = kn = 1) 1.46

Poll-driven batching (kp = 32, kn = 1) 4.97

Poll-driven and NIC-driven batching 9.77
(kp = 32, kn = 16)

Table 1: Forwarding rates achieved with different polling
configurations. kp=32 is the default Click maximum. We
stop at kn=16 because the maximum PCIe packet size is
256B; a packet descriptor is 16B, hence, we can pack at
most 16 descriptors in a single PCIe transaction.

“Batch” processing is essential. Forwarding a packet
involves a certain amount of per-packet book-keeping
overhead—reading and updating socket buffer descriptors
and the data structures (ring buffers) that point to them. This
overhead can be reduced by “bulk” processing descriptors,
i.e., amortizing book-keeping operations by incurring them
once every k packets. The standard approach is to drive such
batching from the application : specifically, Click can re-
ceive up to kp packets per poll operation—we call this “poll-
driven” batching. To this, we added “NIC-driven” batch-
ing: we extended our NIC driver to relay packet descriptors
to/from the NIC only in batches of kn packets. This results
in fewer (but larger) transactions on the PCIe and I/O buses
and complements poll-driven batching by ensuring that at
least kn packets are available to be polled in at a time.

We measure our server’s maximum forwarding rate us-
ing all 8 cores and various polling configurations. Table 1
shows the results: Poll-driven batching offers a 3-fold per-
formance improvement relative to no batching, while adding
NIC-driven batching improves performance by an additional
factor of 2. Hence, unless stated otherwise, from here on we
configure our servers with batching parameters kp = 32 and
kn = 16.

Batching increases latency (since the NIC waits for kn

packets to arrive before initiating a PCIe transaction) and
jitter (since different packets may have to wait at the NIC
for different periods of time). On the other hand, batching
is necessary only at high speeds, where packet inter-arrival
times are small (on the order of nanoseconds), hence, the
extra latency and jitter are expected to be accordingly small.
At lower packet rates, increased latency can be alleviated by
using a timeout to limit the amount of time a packet can wait
to be “batched” (we have yet to implement this feature in our
driver).

NUMA-aware data placement is not. We initially ex-
pected careful data placement to be essential in maximiz-
ing performance since the Nehalem is a NUMA architec-
ture. This expectation was strengthened when we found
that Linux does not always place data in an ideal way:
even though the packets themselves are ideally placed (each
one closest to the core that reads it from the NIC), socket-
buffer descriptors are always placed in one particular mem-
ory (socket-0, the one that belongs to CPU-0), independently
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Figure 7: Aggregate impact on forwarding rate of new
server architecture, multiple queues, and batching.

of which core is processing the packet.
Surprisingly, we found that, at least for our workloads,

careful data placement makes no difference in performance.
We demonstrate this through a simple setup: we disable
the cores on socket-1 and measure the maximum forward-
ing rate achieved by the 4 cores on socket-0; in this case,
both packets and socket-buffer descriptors are ideally placed
in the memory of socket-0—we record a forwarding rate of
6.3Gbps. We then repeat the experiment but this time disable
the cores on socket-0 and use only the 4 cores in socket-1; in
this case, the packets are placed in the memory of socket-1,
while the descriptors are placed in the “remote” memory of
socket 0. In this latter case, we find that approximately 23%
of memory accesses are to remote memory (our tools break-
down memory accesses as local vs. remote), nonetheless,
we get a forwarding rate of 6.3Gbps. Hence, we conclude
that custom data placement is not critical. This is not to
suggest that careful data placement is never required—just
that, for our particular (fairly memory-intensive) workload
and server architecture, it isn’t.

Putting it all together. In summary, we found that the per-
formance potential of multi-core servers is best exploited,
when parallelism at the CPUs is accompanied by paral-
lelism in memory access (through dedicated memory con-
trollers and buses) and NICs (through multiple queues),
and if the lower levels of the software stack are built to
leverage this potential (through batching). To this end, we
took an existing 10Gbps NIC driver and added support for
(1) polling/writing to multiple queues and (2) configurable
batching of socket-buffer descriptor operations.

We now look at the cumulative effect of our design
lessons. We record the forwarding rate achieved by our
server using all eight cores, four 10Gbps ports, 64B pack-
ets, under the same simple forwarding as in the toy scenar-
ios (i.e., packets are forwarded between pre-determined in-
put and output ports) and a uniform any-to-any traffic pattern
(i.e., traffic from each input is uniformly split across all out-
put ports). We repeat this experiment four times: (1) using
an 8-core Xeon server without any of our changes (i.e., no
multi-queue NICs and no batching), (2) our Nehalem server
without any of our changes, (3) our Nehalem server with
multiple queues but no batching, and (4) our Nehalem server
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with both multiple queues and batching. Fig. 7 shows the re-
sults: we see that our modifications lead to a 6.7-fold (670%)
improvement relative to the same server without our modi-
fications and an 11-fold improvement relative to the shared-
bus Xeon.

Thus, we find that our modest design changes signifi-
cantly impact performance. We arrived at these through a
more careful (than usual) understanding of the underlying
hardware—its raw resource capability, potential bottlenecks,
and contention points. While some “awareness” of hard-
ware is always useful in optimizing performance, we found
that, with greater parallelism in server hardware, the perfor-
mance impact of this awareness can be quite dramatic. At
the same time, we note that our modifications actually have
little-to-no impact on Click’s programming model. Finally,
we note that, although we focus on packet forwarding, we
expect the above findings would apply to the more general
class of streaming applications (e.g., continuous query pro-
cessors, stock trading, or video streaming).

5 Evaluation: Server Parallelism
Having established how we parallelize packet-processing
within a server, we now evaluate the resulting server per-
formance for different workloads. After describing our test
workloads (§5.1), we start with black-box testing (§5.2),
then analyze the observed performance (§5.3). For clarity,
in this section we evaluate performance in the context of one
server and one workload at a time; §6 then looks at server
performance in a complete VLB-cluster router.

5.1 Workloads
At a high level, a packet-processing workload can be charac-
terized by (1) the distribution of packet sizes, and (2) the ap-
plication, i.e., the type of processing required per packet. As
far as packet size is concerned, we consider synthetic work-
loads, where every packet has a fixed size of P bytes, as well
as a trace-driven workload generated from the “Abilene-I”
packet trace collected on the Abilene network [10]. As far
as the application is concerned, we consider the following
three:

1. Minimal forwarding: In this application, traffic arriving
at port i is just forwarded to port j—there is no routing-
table lookup nor any other form of packet processing.
This simple test is valuable for several reasons. First,
it stresses our ability to rapidly stream large volumes
of cache-unfriendly data through the system, the key
requirement that makes packet processing challenging.
Second, it exercises the minimal subset of operations
that any packet-processing (for that matter, any stream-
ing) application incurs and consequently offers an up-
per bound on the achievable performance for all such
applications. Finally, minimal forwarding is precisely
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Figure 8: Forwarding rate for different workloads. Top:
as a function of different packet-size distributions, when
the server performs minimal forwarding. Bottom: as a
function of different packet-processing applications, for
64B packets and the Abilene trace. “Ab.” refers to the
Abilene trace.

the type of processing performed by VLB nodes when
they act as intermediate or destination nodes.

2. IP routing: We implement full IP routing including
checksum calculations, updating headers, and perform-
ing a longest-prefix-match lookup of the destination ad-
dress in a routing table. For this latter, we use the
Click distribution’s implementation of the D-lookup al-
gorithm [34] and, in keeping with recent reports, a
routing-table size of 256K entries. For synthetic input
traffic, we generate packets with random destination ad-
dresses so as to stress cache locality for IP lookup op-
erations.

3. IPsec packet encryption: In this application, every
packet is encrypted using AES-128 encryption, as is
typical in VPNs.

Our selection represents commonly deployed packet-
processing applications that are fairly diverse in their com-
putational needs. For example, minimal forwarding stresses
memory and I/O; IP routing additionally references large
data structures; encryption is CPU-intensive.

Given this setup, our primary performance metric is the
maximum attainable loss-free forwarding rate, reported in
terms of either bits per second (bps) or packets per second
(pps).

5.2 Black-Box System Performance
First, we measure the maximum loss-free forwarding rate
our server can sustain when running the minimal-forwarding
application, given (1) input traffic of fixed-size packets, re-
peated for different packet sizes, and (2) the Abilene trace.
The resulting rate is shown in Fig. 8 (top), in both bps and
pps. We see that, given larger packets or the Abilene trace,
the server sustains 24.6Gbps; this is the maximum input traf-
fic we can generate, meaning that performance, in this case,
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is limited by the number of NICs our server can fit—we do
not hit any bottleneck inside the server. In contrast, given
64B packets, the server saturates at 9.7Gbps or 18.96Mpps.

We observe a similar relationship between packet size
and performance for all applications. Hence, from here
on, we focus on (1) fixed-size packets of minimum length
(P = 64B) and (2) the Abilene trace. Fig. 8 (bottom)
shows server performance for our three different applica-
tions. We see that performance drops as the per-packet pro-
cessing demands increase: for IP routing, the server sat-
urates at 24.6Gbps given the Abilene trace and 6.35Gbps
given 64B packets; for IPSec, the rates are even lower—
4.45Gbps given Abilene, 1.4Gbps given 64B packets. We
should note that, compared to the state of the art, our IPsec
rates are still commendable—routers typically use additional
IPsec accelerators to scale to 2.5Gbps [4]–10Gbps [2].

We now look inside our server to understand these black-
box performance results.

5.3 Deconstructing System Performance
Our approach is to probe the limits of the server’s compo-
nents with the aim of understanding what bottleneck(s) cur-
rently limit performance and how performance may be ex-
pected to scale with future servers. Our methodology is as
follows. We consider each of the major system components:
(1) CPUs, (2) memory buses, (3) the socket-I/O links, (4)
the inter-socket link, and (5) the PCIe buses connecting the
NICs to the I/O hub (see Fig. 4).3 For each component, we
estimate an upper bound on the per-packet load that the com-
ponent can accommodate, as a function of the input packet
rate. Then we measure the per-packet load on the component
under increasing input packet rates, given different work-
loads. Comparing the actual loads to our upper bounds re-
veals which components are under greatest stress and, hence,
likely to be bottlenecks.

We directly measure the actual loads on the system buses
using our tools. Computing the per-packet CPU load re-
quires more attention, because Click operates in polling
mode, hence, the CPUs are always 100% utilized. To com-
pute the “true” per-packet CPU load, we need to factor out
the CPU cycles consumed by empty polls—i.e., cycles where
the CPU polls for packets to process but none are available
in memory. We do this by measuring the number of cycles
consumed by an empty poll (ce) and the number of empty
polls measured per second (Er) for each input packet rate
r; deducting ce × Er from the server’s total number of cy-
cles per second gives us the number of cycles per second
consumed by packet processing for each input packet rate r.

We consider two approaches for estimating upper bounds
on the per-packet loads achievable by our server’s compo-
nents. The first one is based on the nominal rated capacity of
each component. For example, our server has eight 2.8GHz

3We do not directly consider L3 caches, since any increase in cache miss
rates appears as load on the memory buses, which we do consider.
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Figure 9: CPU load (in cycles/packet) as a function of in-
coming traffic rate (in packets/sec) for different packet-
processing applications. In the legend, “fwd” corre-
sponds to minimal forwarding and “rtr” to IP routing,
while “cycles available” corresponds to the nominal ca-
pacity of the CPUs.

cores and, hence, we estimate an upper bound of 8×2.8×109

r
cycles/packet given an input packet rate r. For certain com-
ponents (e.g., the memory buses), actually achieving this
nominal capacity is known to be difficult. Hence, we also
consider a second, empirical approach that uses benchmarks,
specifically designed to impose a high load on the target
component. For example, to estimate an upper bound on the
per-packet load achievable by the memory buses, we wrote
a simple “stream” benchmark that writes a constant value to
random locations in a very large array, and measured the re-
sulting load, Mstrm, on the memory buses, in bytes/second.
We then estimate the maximum per-packet load achievable
by the memory buses as Mstrm

r bytes/packet, given an input
packet rate r.

Table 2 summarizes the nominal and empirical upper
bounds we derived for each system component. Figs. 9 and
10 plot both of these upper bounds, as well as the per-packet
loads measured on each system component, for each of our
three applications and 64B packets. We draw the following
conclusions from these results:

1) Bottlenecks. We see that, for all three applications, the
measured CPU load approaches the nominal upper bound,
indicating that the CPUs are the bottleneck in all three cases4

(Fig. 9). The next question is whether the CPUs are efficient
in their packet processing, i.e., whether they spend their cy-
cles doing useful work, as opposed to, for example, waiting
for memory accesses to complete. We answer this question
by breaking down CPU load (cycles per packet) into instruc-
tions per packet and cycles per instruction (CPI) for each
application. These are listed in Table 3. Nehalem processors
can retire up to 4 instructions/cycle leading to a minimum

4We can conclude this because the cycles/packet remains constant under
increasing packet rates. If, instead, the cycles/packet were growing with in-
put packet rate, then we would have to consider the possibility that the true
problem is at the memory system. In that case, the problem would be that
higher packet rates stress the memory system leading to higher memory ac-
cess times, which in turn lead to higher CPU cycles/packet since the CPUs
spend more time waiting for memory accesses to return.
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Component(s) Nominal capacity Benchmark for empirical upper-bound
CPUs 8× 2.8 GHz (#cores×cpu-speed) None
Memory 410 Gbps (#mem-buses×bus-capacity) 262 Gbps (stream with random access)
Inter-socket link 200 Gbps [19] 144.34 Gbps (stream)
I/O-socket links 2× 200 Gbps [19] 117 Gbps (min. forwarding with 1024B packets)
PCIe buses (v1.1) 64 Gbps (2 NICs × 8 lanes× 2 Gbps per direction) [44] 50.8 Gbps (min. forwarding with 1024B packets)

Table 2: Upper bounds on the capacity of system components based on nominal ratings and empirical benchmarks.

Application instructions/packet cycles/instruction
Minimal forwarding 1,033 1.19
IP routing 1,512 1.23
IPsec 14,221 0.55

Table 3: Instructions-per-packet (IPP) and cycles-per-
instruction (CPI) for 64B packet workloads.

CPI of 0.25 [19]. Discussion with CPU architects reveals
that, as a rule of thumb, a CPI of 0.4–0.7, for CPU-intensive
workloads, and 1.0–2.0, for memory-intensive workloads, is
regarded as efficient CPU usage. We thus conclude that our
CPUs are efficiently used; moreover, in the case of mini-
mal forwarding, the small number of instructions per packet
shows that Click’s software architecture is efficient. In other
words, a poor software architecture is not the problem; per-
formance truly is limited by a lack of CPU cycles.

We note that having the CPUs as the bottleneck is not un-
desirable, since this (finally) aligns the performance needs of
router workloads with the vast majority of PC applications.
Hence, software routers stand to benefit from the expectation
that the number of cores will scale with Moore’s law [33].

2) Small vs. large packets. We compared the per-packet
load imposed on the system by 1024B-packet workloads to
that imposed by 64B-packet workloads (we omit the graph
for brevity). A 1024B packet is 16 times larger than a 64B
one, so, initially, we expected the load imposed by each
1024B packet on each system bus to be 16 times larger than
the load imposed by a 64B packet. Yet, we found that it is
only 6, 11, and 1.6 times larger, respectively, for the mem-
ory buses, I/O, and CPU. This means that the per-byte load
is higher for smaller packets. In retrospect, this makes sense
due to the book-keeping performed for each packet, which is
independent of packet size; for larger packets, book-keeping
overhead is amortized across more bytes.

3) Non-bottlenecks. We see that the per-packet loads on the
memory and I/O buses are well below their empirically de-
rived upper bounds, indicating that these traditional problem
areas for packet processing are no longer the primary per-
formance limiters. Likewise, a traditional concern regard-
ing multi-socket architectures is the scalability of the inter-
socket interconnects; however, we see that these links are
not heavily loaded for our workloads.

4) Expected scaling. Finally, we see that, for all three appli-

0 2 4 6 8 10 12 14 16 18 20
102

103

104

105

M
em

or
y 

lo
ad

 (b
yt

es
/p

ac
ke

t)

 

 
fwd rtr ipsec benchmark nom

0 2 4 6 8 10 12 14 16 18 20
102

103

104

105
I/O

 lo
ad

 (b
yt

es
/p

ac
ke

t)

0 2 4 6 8 10 12 14 16 18 20
102

103

104

PC
Ie

 lo
ad

 (b
yt

es
/p

ac
ke

t)

0 2 4 6 8 10 12 14 16 18 20

102

103

104

105

Packet rate (Mpps)in
te

r−
so

ck
et

 (b
yt

es
/p

ac
ke

t)
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a function of the incoming traffic rate (in packets/sec).
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cations and all packet-size distributions, the per-packet load
on the system is constant with increasing input packet rate.
This allows us to extrapolate in a straightforward manner
how performance, for these particular applications, is ex-
pected to scale with next-generation servers. As an example,
we consider the expected follow-up to our server, which has
4 sockets and 8 cores per socket, thus offering a 4x, 2x and
2x increase in total CPU, memory, and I/O resources, re-
spectively (Nehalem is designed to scale up to 8 cores [33]).
Adjusting the upper bounds in Figs. 9–10 accordingly and
extrapolating where the observed loads would intersect with
the new upper bounds, we project performance rates of 38.8,
19.9, and 5.8Gbps for minimal forwarding, IP routing, and
IPsec, respectively, given 64B packets, and find that the CPU
remains the bottleneck. Similarly, we can estimate the per-
formance we might have obtained given the Abilene trace,
had we not been limited to just two NIC slots: ignoring the
PCIe bus and assuming the socket-I/O bus can reach 80% of
its nominal capacity, we estimate a performance of 70Gbps
for the minimal-forwarding application given the Abilene
trace. These are, of course, only projections, and we intend
to validate them when possible.

In summary, we found that current servers achieve com-
mendable performance given the realistic Abilene workloads
(minimal forwarding: 24.6Gbps, IP routing: 24.6Gbps),
but fare worse given the worst-case 64B-packet workloads
(minimal forwarding: 9.7Gbps, IP routing: 6.35Gbps). We
showed that the CPU is the bottleneck, but estimated that
next-generation servers are expected to offer a 4-fold perfor-
mance improvement. In the next section, we look at server
performance in a complete cluster router.

6 The RB4 Parallel Router
We built a prototype parallel router based on the design
and performance lessons presented so far. Our router—
the RB4—consists of 4 Nehalem servers, interconnected
through a full-mesh topology with Direct-VLB routing (§3).
Each server is assigned a single 10Gbps external line.

6.1 Implementation
We start with a straightforward implementation of the algo-
rithms described earlier, then add certain modifications to
Direct VLB, aimed at reducing the load on the CPUs (since
we identified these as our bottleneck) and avoiding reorder-
ing (the issue we deferred from §3). We discuss each in turn.

Minimizing packet processing. In Direct VLB, each
packet is handled by 2 or 3 nodes (2, when it is directly
routed from its input to its output node, 3, when it is routed
via an intermediate node). The straightforward implemen-
tation would be to have, at each node, the CPU process the
packet’s header and determine where to send it next, which
would result in each packet’s header being processed by a

CPU 2 or 3 times. Instead, in RB4, each packet’s header
is processed by a CPU only once, at its input node; sub-
sequent nodes simply move the packet from a receive to a
transmit queue. To achieve this, we leverage a NIC feature
that assigns packets to receive queues based on their MAC
addresses.

More specifically: When a packet arrives at its input node,
one of the node’s CPUs processes the packet’s headers and
encodes the identity of the output node in the packet’s MAC
address. At each subsequent node, the packet is stored in
a receive queue based on its MAC address; hence, by look-
ing at the receive queue where the packet is stored, a CPU
can deduce the packet’s MAC address and, from that, the
packet’s output node. In this way, the CPU that handles the
packet at subsequent nodes can determine where to send it
without actually reading its headers. We should clarify that
this particular implementation works only if each “internal”
port (each port that interconnects two cluster servers) has
as many receive queues as there are external ports—hence,
with current NICs, it would not be applicable to a router with
more than 64 or so external ports.

Avoiding reordering. In a VLB cluster, two incoming
packets can be reordered because they take different paths
within the same server (due to multiple cores) or across the
cluster (due to load balancing). One approach to avoiding re-
ordering relies on perfectly synchronized clocks and deter-
ministic per-packet processing latency [37]; we reject this,
because it requires custom operating systems and hardware.
Another option would be to tag incoming packets with se-
quence numbers and re-sequence them at the output node;
this is an option we would pursue, if the CPUs were not our
bottleneck. Instead, we pursue an alternative approach that
mostly avoids, but does not completely eliminate reordering.

We try to avoid reordering within each TCP or UDP
flow—after all, the main reason for avoiding reordering is
that it can affect TCP or streaming performance. First, same-
flow packets arriving at a server are assigned to the same re-
ceive queue. Second, a set of same-flow packets arriving at
the cluster within δ msec from one another are sent, when-
ever possible, through the same intermediate node—this is
akin to the Flare load-balancing scheme [35]. When a burst
of same-flow packets (a “flowlet” in Flare terminology) does
not “fit” in one path (i.e., sending the whole flowlet to the
same intermediate node would overload the corresponding
link), then the flowlet is load-balanced at the packet level as
in classic VLB. We found that, in practice, δ = 100msec
(a number well above the per-packet latency introduced by
the cluster) works well, i.e., allows most flowlets to be sent
through one path, thereby avoiding reordering (§6.2).

6.2 Performance

Forwarding performance. Given a workload of 64B pack-
ets, we measure RB4’s routing performance at 12Gbps, i.e.,
each server supports an external line rate of 3Gbps. This
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number is in keeping with our expectations: VLB theory
tells us that, in a 4-node Direct-VLB cluster of external rate
R, each node must process packets at a rate between 2R
(when all packets are directly routed) and 3R (§3.2). Given
a 64B packet workload, RB4 routes all packets directly (be-
cause the traffic rate between any two nodes is never enough
to saturate the link between them), hence, each node must
process packets at rate 2R. Moreover, we know that, given
64B packets, a single server achieves a maximum process-
ing rate of 9.7Gbps when running minimal forwarding and
6.35Gbps when running IP routing (§5). In RB4, each server
performs both IP routing (for packets entering the cluster
at that server) and minimal forwarding (for packets exiting
the cluster at that server, or being load-balanced during the
second VLB phase). Hence, we expected RB4 performance
to lie between 4 × 6.35

2 = 12.7 and 4 × 9.7
2 = 19.4Gbps.

The reason for RB4’s somewhat lower performance is due
to the extra overhead caused by the reordering-avoidance al-
gorithm (recall that our bottleneck is the CPU, and reorder-
ing avoidance requires it to maintain per-flow counters and
packet-arrival times, as well as keep track of link utilization
to avoid overloading).

Given the Abilene workload, we measure RB4’s routing
performance at 35Gbps, which, again, is in keeping with
what we expected: A single server (running either mini-
mal forwarding or IP routing) can process the Abilene work-
load at 24.6Gbps (§5), hence, we expected RB4 to process
the same workload at a rate between 4 × 24.6

3 = 33 and
4× 24.6

2 = 49Gbps (the latter for a perfectly uniform traffic
matrix). At the same time, the performance of our prototype
is constrained by the limit of approximately 12Gbps that a
single (dual port) NIC can sustain, as described in §4.1. At
35Gbps, we are close to this per-NIC limit: each NIC that
handles an external line sustains approximately 8.75Gbps of
traffic on the port connected to the external line plus approx-
imately 3Gbps on the second “internal” port. So, RB4’s per-
formance is within the expected range, but, unfortunately,
the limited number of PCIe slots on our prototype server (be-
cause of which we face the per-NIC limit) prevents us from
precisely quantifying where—in the range between 2R and
3R—VLB implementation overhead lies. In future work, we
plan to upgrade our server motherboards to fully explore this
overhead.

Reordering. To measure the amount of reordering intro-
duced by RB4, we replay the Abilene trace, forcing the en-
tire trace to flow between a single input and output port—
this generated more traffic than could fit in any single path
between the two nodes, causing load-balancing to kick in,
hence, creating opportunity for reordering. We measure re-
ordering as the fraction of same-flow packet sequences that
were reordered within their TCP/UDP flow; for instance, if
a TCP flow consists of 5 packets that enter the cluster in se-
quence 〈p1, p2, p3, p4, p5〉 and exit the cluster in sequence
〈p1, p4, p2, p3, p5〉, we count one reordered sequence. With
this metric, we observe 0.15% reordering when using our

reordering-avoidance extension and 5.5% reordering when
using Direct VLB without our extension.

Latency. We estimate packet latency indirectly: a packet’s
traversal through a single server involves two back-and-
forth DMA transfers between the NIC and memory (one
for the packet and one for its descriptor) plus processing by
the CPUs. In addition, NIC-driven batching means that a
packet may wait for 16 packets before transmission. We
estimate a DMA transfer for a 64B packet at 2.56µsecs
based on our DMA engine speed of 400MHz and published
reports [50]. From Table 3, routing a 64B packet takes
2425 cycles or 0.8µsecs and, hence, batching can add up to
12.8µsecs. Thus, we estimate a per-server packet latency of
24µs (4×2.56+12.8+0.8). Traversal through RB4 includes
2–3 hops; hence we estimate RB4’s latency as 47.6−66.4µs.
As an additional point of reference, [42] reports a packet-
processing latency of 26.3µs for a Cisco 6500 Series router.

7 Related Work
Using general-purpose elements to build programmable
routers is not a new idea. The original NSFNET used
computers running Berkeley UNIX interconnected with a
4Mbps IBM token ring [26]. MGR, an early high-speed
router, used custom forwarding-engine cards interconnected
through a switched bus, yet the processor on these cards
was a general-purpose one [43]. This combination of cus-
tom cards/interconnect with general-purpose processors was
also used in commercial routers, until router manufacturers
transitioned to ASIC-based forwarding engines for higher
performance. More recently, single-server software routers
have emerged as low-cost solutions for low-speed (1–5Gbps)
environments [16]. Our contribution lies in detailing how
multiple servers can be clustered to achieve greater scalabil-
ity and studying how modern servers can be exploited to this
end.

Several efforts have sought to reconcile performance and
programmability using network processors (NPs) [45].
Most recently, Turner et al. proposed a “supercharged” Plan-
etlab Platform, which uses IXP NPs (for the data plane)
and general-purpose servers (for the control plane), inter-
connected by an Ethernet switch; they achieve forwarding
rates of 5Gbps for 130B packets [46]. We focus, instead, on
using general-purpose servers even on the data plane, and
our results indicate these offer competitive performance.

Click [25, 38] and Scout [45] explored how to architect
router software so as to enable easy programmability and
extensibility; SMP Click [25] extended the early Click archi-
tecture to better exploit multiprocessor PCs. We also started
with Click, extended it to exploit new server technologies,
studied the performance benefits of these technologies, and,
finally, applied Click to building a cluster-based router.

Bianco et al. measured the routing performance of a
single-core server equipped with a PCI-X (rather than PCIe)
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I/O bus; they found that the bottlenecks were the (single)
CPU and the PCI-X bus [23]. More recent work studied
the performance of multicore shared-bus Xeon servers in the
context of TCP termination [48] and virtual routers [31], and
we, also, studied the packet-processing capabilities of that
architecture [29]; these studies report that the bottleneck lies
in the shared bus (the “front-side bus” or FSB) connecting
the CPUs to the memory subsystem. In contrast, Route-
Bricks relies on a newer server architecture; we showed that
this enables a 2−3x performance improvement, and that the
packet-processing bottleneck now lies at the CPUs.

Finally, our work extends an earlier workshop paper [22],
where we made the case for scaling software routers and pro-
posed a cluster-based approach [22]; in this paper, we pre-
sented a detailed design, implementation, and evaluation for
that approach.

8 Discussion

We evaluated the feasibility of our router architecture from
the standpoint of performance—the traditional Achilles’
heel of software routers. However, its ultimate feasibil-
ity depends on additional, equally important issues, such as
space and power consumption, where any solution based on
general-purpose server components faces tough competition
from solutions using custom hardware. On the other hand,
server-based solutions enable programmability and extensi-
bility. So, to compare a server-based, programmable router
to a specialized, non-programmable one, we would have
to quantify the benefits of programmability—e.g., would a
20% increase in power consumption be worth the ability to
rapidly upgrade network functionality, say, to protect against
a new type of worm? We do not attempt such a comparison
here—it merits to be the topic of a research project in it-
self. We only discuss space and power consumption, as well
as cost, briefly, and offer a few data points on how current
routers fare, as relevant points of reference.

Form factor. Router form factor is typically a question
of port density. Off the shelf, the RB4 would be a 40Gbps
router (assuming we can close our remaining performance
gap) that occupies 4U, which is not unreasonable. However,
scaling RB4 up would be problematic, especially if we in-
troduce additional servers to cope with the limited per-server
fanout. One avenue is to grow the per-server fanout; how-
ever, doing so by adding external NIC slots would lead to
larger servers. Instead, we can integrate Ethernet controllers
directly on the motherboard (commonly done for laptops,
requiring only hardware reconfiguration). The question is
whether we can integrate many such controllers and still sat-
isfy concerns over cooling and chipset area. We estimate
that a regular 400mm motherboard could accommodate 16
controllers to drive 2 × 10Gbps and 30 × 1Gbps interfaces
for a reasonable +48W. With this, we could directly con-
nect 30–40 servers. Thus, 1U servers, each handling one

10Gbps external line, would result in a 300–400Gbps router
that occupies 30U. In addition, form factor will benefit from
server advances; e.g., we estimated that the 4-socket Ne-
halem would offer a 4x performance improvement (§5.3)
and, hence, for the same performance, we can expect to re-
duce form factor by 4x. The above is, of course, just a back-
of-the-envelope estimate that requires evaluation before we
draw final conclusions. For reference, we note that the Cisco
7600 Series [3] offer up to 360Gbps in a 21U form-factor.

Power. Based on our server’s nominal power rating, the
RB4 consumes 2.6KW. As a point of reference, the nomi-
nal power rating of a popular mid-range router loaded for
40Gbps is 1.6KW [3]—about 60% lower. One approach to
reducing power consumption would be to slow-down, or put
to sleep, system components that are not stressed by router
workloads, using commonly available low-power modes for
different subsystems (memory, serial links, floating-point
units).

Cost/Price. With respect to the price/cost: our RB4 proto-
type cost us $14, 500; for reference, the quoted price for a
40Gbps Cisco 7603 router was $70, 000. Again, this should
not be viewed as a direct comparison, since the former rep-
resents raw costs, while the latter is a product price.

Programmability. Our high-level goal was to achieve
both high performance and ease of programming. Hence,
we started with Click—which offers an elegant program-
ming framework for routing applications [38]—and sought
to maximize performance without compromising Click’s
programming model. Our design maintained Click’s modu-
larity and extensibility; our only intervention was to enforce
a specific element-to-core allocation. As a result, our router
is not just programmable in the literal sense (i.e., one can
update its functionality), it also offers ease of programma-
bility. Case in point: beyond our 10G NIC driver, the RB4
implementation required us to write only two new Click “el-
ements”; the effort to develop a stable NIC driver far ex-
ceeded the effort to write our two Click elements and tie
them with other pre-existing elements in a Click configura-
tion.

As a next step, future research must demonstrate what new
kinds of packet processing RouteBricks enables and how
these affect performance. Since we have identified CPU
processing as the bottleneck of our design, we expect per-
formance to vary significantly as a function of the applica-
tion, as showcased by the IP-routing and IPsec experiments
(§5). Hence, the key challenge will be to identify the right
API (perhaps the right Click extension), which will allow the
programmer not only to easily add new, non-traditional func-
tionality, but also to easily predict and control the resulting
performance implications.
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9 Conclusions
We looked to scale software routers as a means of mov-
ing from a network of special-purpose hardware routers to
one of general-purpose infrastructure. We proposed a paral-
lel router architecture that parallelizes routing functionality
both across and within servers. The goal we set was high: es-
sentially to match the performance of even high-end routers
(with line rates of 10Gbps and 10s or 100s of ports). We
cannot claim that our results, based on today’s servers, make
a slam-dunk case for getting there. That said, they do show
that we are a whole lot closer than common expectations
for software routers would have led us to believe: we can
comfortably build software routers with multiple (about 8–
9) 1Gbps ports per server, which we can scale to 10s or 100s
of ports by grouping multiple servers; we come very close
to achieving a line rate of 10Gbps and, importantly, show
that emerging servers promise to close the remaining gap to
10Gbps, possibly offering up to 40Gbps. The broad impli-
cations of this are twofold: one is that software routers could
play a far more significant role than previously believed; the
more ambitious extrapolation is that a very different indus-
try structure and way of building networks might actually be
within not-so-distant reach.
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