
Securing Enterprise Networks Using Traffic Tainting

Anirudh Ramachandran, Yogesh Mundada, Mukarram Bin Tariq, and Nick Feamster
School of Computer Science, Georgia Institute of Technology

{avr,yhm,mtariq,feamster}@cc.gatech.edu

ABSTRACT

Enterprise networks are vulnerable to attacks ranging from data

leaks to the spread of malware to insider threats. Previous defenses

have largely focused on securing hosts; unfortunately, when hosts

are compromised, these defenses become ineffective. Rather than

attempting to harden the host against every possible attack (which

is impractical) or constraining the software that can run on a host

(which is inconvenient), we place a small amount of trusted code

on the host to assist with tracking the provenance of network traf-

fic, moving the rest of the trust and function to the network. We

present Pedigree, a system that tracks information flow across pro-

cesses and hosts within a network by annotating traffic with taints

that reflect the process that generated the traffic and the inputs that

process has taken (we call this function traffic tainting). A tagger

on the host annotates network traffic with information about the

“taints” that the sending process has acquired. Network devices act

as arbiters to take appropriate actions (e.g., blocking) based on the

taints associated with the traffic and the enterprise network’s secu-

rity policy. We have implemented Pedigree’s host-based tagger as a

Linux kernel module and the arbiter using the OpenFlow platform.

This demonstration presents a prototype deployment of Pedigree

that identifies and prevents both sensitive data leaks and the spread

of malware in a typical enterprise network setting. The demon-

stration will show that Pedigree can defend against these attacks

without significant overhead at the host or the filtering device.

1. INTRODUCTION
Because enterprise networks often contain sensitive or valuable

information, operators go to great lengths to secure them: these

networks are often strongly partitioned from Internet traffic, and

users and hosts within the network are subjected to strict security

policies. Despite these measures, these networks remain vulner-

able due to the inevitable bugs in applications, user carelessness,

the heterogeneity of hosts, and insider threats. Enterprise networks

continually fall victim to exfiltration (i.e., leaks of confidential data

from the network) and malware. Network administrators deploy

a hodgepodge of solutions to mitigate these vulnerabilities, such

as using watermarking techniques to prevent exfiltration, and de-

ploying both antivirus tools on the host and deep-packet inspection

devices in the network to control the spread of malware. These so-

lutions are not effective in many cases. For example, watermarking

can often be subverted, and antivirus tools, despite constant up-

dates, often fail to detect polymorphic worms. This collection of

point solutions begs the need for a general, low-overhead mech-

anism to mitigate these vulnerabilities without being specific to a

few existing types of attacks.

To control how information flows within an enterprise and to

protect the network against continually evolving threats, network

administrators are faced with two approaches for defense: secur-

ing end hosts, and controlling network traffic. While securing end

hosts provides some protection, it is not a panacea: First, appli-

cations can be susceptible to new (“zero-day”) vulnerabilities, and

malware may still find its way into enterprise hosts through com-

promised Web sites (e.g., cross-site scripting attacks), email attach-

ments, or by social engineering attacks. Second, enterprises are

also vulnerable to insider threats, whereby an employee or other

insider may steal or leak confidential information either intention-

ally or accidentally (e.g., via a stolen laptop). Finally, end hosts are

heterogeneous (e.g., they may include hosts running different oper-

ating systems, PDAs, phones, etc.), so ensuring that every possible

device on the network is patched is not practical. On the other hand,

deploying firewalls and middleboxes after the fact requires opera-

tors to play a guessing game about how traffic should be controlled

and filtered. We offer a different philosophy: End hosts should

implement a simple OS-level function that allows the network to

determine the provenance of the network traffic, and all security

policy decisions should be enforced in the network.

In support of this philosophy, we demonstrate Pedigree, a dis-

tributed information flow tracking system that allows network de-

vices within an enterprise to classify flows based on their features

or “tags”. A tag is a collection of identifiers (called “taints”) that

provide a history comprising the identifiers for the process that gen-

erated the information flow and other OS-level resources (processes

or files) that may have affected the process. We refer to this history

as the provenance of the traffic, and the process of annotating net-

work traffic with these taints as traffic tainting. To prevent attacks

with a general mechanism like Pedigree, we rely on an assumption

that the user will not actively try to subvert his or her own system.

This assumption is reasonable in most enterprise networks, where

users or application programs are typically not allowed to modify

or disable OS-security settings (e.g., as an administrator or root

user); thus, a small module added to the host OS can be reasonably

assumed to be trusted. Section 2 describes how Pedigree uses a

combination of host and network functions to enable this tracking.

Section 3 concludes with a short description of the demonstration.

2. DESIGN AND IMPLEMENTATION
Traffic tainting presents significant scalability and implementa-

tion challenges. First, the number of taints that the system must

track for each process can grow rapidly. Further, because there

are a large number of ways that the information can flow among

resources, Pedigree must perform gate-keeping in a way that al-

lows it to track information flow in an efficient manner. Below,

we briefly describe the design of the two main components in a

Pedigree-enabled network: the tagger and the arbiter. Finally, we

briefly overview the threat model for Pedigree.

2.1 Tagger
The tagger is a trusted component in the host operating system

that is not under the user’s control. Our prototype is implemented

as a Linux kernel module using the Linux Security Modules frame-

work [3]. The tagger monitors all events in the OS that involve

information flow, and maintains and updates tags for all resources

(processes, files, etc.) Tags of inactive resources (e.g., unopened

files) are stored on disk. Before processes send data to the network,

the tagger sends the latest tag associated with the sending process

as a separate flow (called tagstream) to the remote machine. Sim-

ilarly, before a process is allowed to accept a network connection,

the tagger expects the remote host to send a tagstream that is incor-

porated into the listening process’s local tag. The tagger’s operation

is thus transparent to applications.

The tagger creates a new identifier (called “taint”) whenever a

file is executed, based on a hash sum of the file’s contents). All pro-

cesses and files possess tags; when a process reads another resource

(i.e., other processes and files), the tagger updates the reading pro-

cess’s tags with the taints in the tag of the resource being read.

Such information flow tracking is also possible for two machines

communicating over the enterprise network: before a process sends

data to the network, the tagger sends the process’s current tag to the

remote host as a separate flow (called a “tagstream”). The remote

host’s tagger incorporates taints in the incoming tagstream into the

reading process’s tag. Taggers on communicating hosts ensure that

the latest taint set of each process is communicated to the other

end; if one process’s taint set changes during a connection, the tag-

ger sends an update to the initial taint set to the remote host.

2.2 Arbiter
Tagstreams allow network elements (called arbiters) to moni-

tor the potential provenance of the information contained in flows

generated by machines within the enterprise. Thus all information

flow within a host, as well as between hosts across the enterprise

network, is accompanied by tags carrying the provenance of the in-

formation, which can be used for a number of useful applications,

such as filtering information flows that are undesirable (e.g., attacks

or scans initiated by malware, leakage of secret information).

The arbiter is a network device that can process tagstreams and

apply filter based on the taints in tagstreams. In our deployment,

the arbiter is an OpenFlow-enabled switch that communicates with

a controller machine running Linux. Tagstreams (which precede

every connection) are sent to the controller who checks the tag for

certain taints corresponding to malware or to secret data; if the tag

contains such a taint, the controller instructs the switch to install a

rule to block the flow to which the tagstream corresponds.

2.3 Threat Model
The threat model for Pedigree assumes that users do not actively

try to subvert the system either by bypassing the tagger-enabled

OS or by mounting sophisticated attacks that a normal user-space

program cannot (e.g., using a PCI card in master mode to directly

access physical memory using DMA). Users, however, may un-

wittingly cause their computers to be infected by malware or may

otherwise cause data leakage. Because users (and any programs

they run) often have superuser access to their operating systems,

the tagger must be protected from subversion even from superuser

processes. Pedigree separates user-space administrative privileges

from kernel administrative privileges using the Linux capabilities

mechanism; in addition, Pedigree requires user-space processes—

including administrative processes—to present a credential (typi-

cally a passphrase) to modify kernel parameters.

3. DEMONSTRATION
We present exfiltration prevention and preventing malware

spread as two case studies of how Pedigree can filter traffic based

on non-trivial information tracking. To prevent exfiltration, net-

work administrators inject one or more “secret” taints into the tags

of confidential files prior to distributing them within the enterprise.

Because these taints are preserved irrespective of any operation per-

formed by a process that reads the file (i.e., re-formatting, encryp-

Internet

on taints
Filters based

 flows
Tags of new

 database
Look up taint

Confidential

 Insider
Malicious host

Infected

ConfidentialScan
Traffic

Traffic
Scan

data

data

Openflow
Controller

Hosts with Pedigree Taggers Hosts with Pedigree Taggers

Arbiter
(OpenFlow−enabled switch)

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

������������
��
��
��

�����
�����
�����
�����

��
��
��
��

������������
��
��
��

�����
�����
�����
�����

��
��
��
��

Hub
Ethernet

Hub
Ethernet

Ethernet
Switch

Figure 1: A typical Pedigree deployment in an enterprise net-

work, where a malicious host is trying to scan its local network.

tion, etc.), they are not vulnerable to attacks that defeat watermark-

ing schemes. Arbiter elements at the exit points of the enterprise

network are equipped to drop all flows that carry the secret taints in

their tags. Pedigree can also help stem the spread of malware: even

if a malware executable infected one host before its details (such as

the MD5 hash value of the executable) were known, this informa-

tion will exist in all flows generated by the malware process; these

taints will be preserved even if the malware is polymorphic. Oper-

ators can configure the arbiter to raise alarms for all flows that have

one or more malware taints in their tagstream.

Figure 1 shows the setup of our demo. We first set up many

Pedigree-enabled end-hosts on a switched network. The switch

supports the OpenFlow [1] standard and is capable of performing

filtering decisions at high speed; this switch and its controller (on a

different end-host) comprise Pedigree’s arbiter. Through this demo,

we wish to demonstrate the following goals.

1. Pedigree defends against a large class of attacks in enterprise

networks such as malware spread and exfiltration without re-

quiring updates to end-host software.

2. Pedigree performs filtering at line rate and imposes little

overhead on host and network resources. In particular, the

overhead of deploying the tagger at end-hosts is comparable

to running an antivirus software.

3. Pedigree is resistant to a variety of evasion attacks including

privilege escalation attacks and polymorphic worms.

Our technical report describes an earlier version of Pedigree [2].

REFERENCES
[1] N. McKeown et al. OpenFlow: Enabling Innovation in College

Networks. http://www.openflowswitch.org/
/documents/openflow-wp-latest.pdf.

[2] A. Ramachandran, K. Bhandankar, M. B. Tariq, and N. Feamster.
Packets With Provenance. Technical report, Georgia Tech, May 2008.
Georgia Tech CSS Technical Report, available at
http://www.cc.gatech.edu/˜avr/pedigree.pdf.

[3] C. Wright, C. Cowan, J. Morris, S. Smalley, and G. Kroah-Hartman.
Linux Security Modules: General Security Support for the Linux
Kernel. In Proc. 11th USENIX Security Symposium, San Francisco,
CA, Aug. 2002.

